
 

 

 

International Conference 

on Dynamics of Composite Structures 
 

 

 
 

 

 

June 2-4, 2015 

Arles, France 
 

 

 

 

Proceedings 
 

  



DYNCOMP’2015  2-4 June 2015, Arles (France) 

  
 

 

 

 
 
 
 
 

To browse the proceedings, use the authors index or the 
search box with CTRL-F (PC) or Command (⌘)-F (Macintosh). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright ©2015 by the authors. Distribution of all material contained in this document is 
permitted under the terms of the Creative Commons license Attribution-NonCommercial-
NoDerivatives 4.0 International (CC-by-nc-nd 4.0). 



Authors Index

Abbadi, Zouhir...................................................................................................................................... 175

Abdelmalek, Zine ..................................................................................................................................113

Ablitzer, Frederic...................................................................................................................................360

Ablitzer, Frédéric............................................................................................................................. 64, 353

Alouani, Antoine.......................................................................................................................................5
Arbaoui, Jamal ........................................................................................................................................ 16

Arfaoui, Makrem...................................................................................................................................105

Atalla, Noureddine................................................................................................................................ 269

Baho, Omar........................................................................................................................................... 205

Baleh, Rachid........................................................................................................................................ 176

Barbarulo, Andrea................................................................................................................................... 66

Bareille, Olivier................................................................................................ 105, 120, 129, 165, 240, 284

Ben Abda, Amel.................................................................................................................................... 101

Ben Abdallah, Jalel................................................................................................................................105

Ben Souf, Mohamed Amine ..................................................................................................................129

Benamar, Rhali ....................................................................................................................... 120, 205, 250

Bermúdez, María Dolores..................................................................................................................... 185

Blairon, Nicolas.....................................................................................................................................284

Borello, Gerard........................................................................................................................................91

Bouazzouni, Amar.................................................................................................................................211

Bouhaddi, Noureddine..............................................................................................................................1
Boumrar, Akli ........................................................................................................................................211

Boussu, François................................................................................................................................... 197

Bouvet, Christophe................................................................................................................................280

Braguy, Cyril......................................................................................................................................... 284

Brocail, Julien........................................................................................................................................360

Butaud, Pauline..................................................................................................................................... 231

Bézier, Guillaume....................................................................................................................................66

Bös, Joachim......................................................................................................................................... 293

Carrión-Vilches, Francisco José............................................................................................................185

Cattabiani, Alessandro.............................................................................................................................66

Chazot, Jean-Daniel ................................................................................................................................ 26

Cherif, Raef........................................................................................................................................... 269

Chevalier, Caroline................................................................................................................................197

Chevallier, Gaël.....................................................................................................................................231

Christen, Jean-Loup.............................................................................................................................. 165

Chronopoulos, Dimitrios............................................................................................................... 129, 140

Claeys, Claus...........................................................................................................................................54

I



Cogan, Scott.......................................................................................................................................... 191

Collet, Manuel............................................................................................................................... 140, 240

Coutellier, Daniel.................................................................................................................................. 197

Dahmane, Merzak................................................................................................................................. 211

Dau, Frédéric.........................................................................................................................................280

De Luca, Patrick....................................................................................................................................332

Deckers, Elke.......................................................................................................................................... 54

Desmet, Wim...........................................................................................................................................54

Dessolier, Thibaut....................................................................................................................................83

Deü, Jean-François ................................................................................................................................150

Dimitrijevic, Zoran................................................................................................................................240

Droz, Christophe..............................................................................................................................46, 260

Dupont, Jean-Baptiste...............................................................................................................................1
El Malki, Aboulghit.................................................................................................................................16

Faderl, Norbert...................................................................................................................................... 197

Fan, Yu...................................................................................................................................................240

Foltête, Emmanuel .........................................................................................................................191, 231

Fouinneteau, Michel..............................................................................................................................164

Gagliardini, Laurent.............................................................................................................................. 175

Garcia Pérez, Pablo............................................................................................................................... 280

Gaudin, Arnaud..................................................................................................................................... 175

Gautier, François..............................................................................................................................70, 175

Genevaux, Jean-Michel.........................................................................................................................360

Gumula, Teresa......................................................................................................................................185

Guyader, Jean-Louis................................................................................................................................64

Haddar, Mohamed................................................................................................................................. 129

Hamdi, Adel ...................................................................................................................................105, 113

Hamdi, Mohamed-Ali............................................................................................................................. 26

Harras, Bilal ............................................................................................................................120, 205, 250

Hassin, Jérémie......................................................................................................................................221

Hereil, Pierre-Louis...............................................................................................................................221

Ichchou, Mohamed........................................................ 46, 105, 113, 120, 129, 140, 165, 205, 240, 260, 284

Jaber, Mariam........................................................................................................................................293

Jalel, Benabdallah..................................................................................................................................113

Jaïem, Emna.......................................................................................................................................... 101

Jridi, Nidhal...........................................................................................................................................105

Kerisit, Christophe................................................................................................................................ 197

Khalfallah, Sinda...................................................................................................................................101

II



Kraiem, Omar........................................................................................................................................307

Lachat, Rémy.......................................................................................................................................... 83

Lacome, Jean-Luc................................................................................................................................. 221

Ladeveze, Pierre ....................................................................................................................................325

Lainé, Jean-Pierre............................................................................................................................ 46, 260

Laligant, Etienne................................................................................................................................... 284

Lascoup, Bertrand................................................................................................................................. 353

Le Plenier, Cyprien................................................................................................................................154

Leerungruang, S.................................................................................................................................... 140

Legallo, Vincent...................................................................................................................................... 74

Legay, Antoine ...................................................................................................................................... 150

Li Hao, Olivier...................................................................................................................................... 325

Limido, Jerôme......................................................................................................................................221

Lépine, Paul...........................................................................................................................................191

Magniez, Julien....................................................................................................................................... 26

Makrem, Arfaoui................................................................................................................................... 113

Mejdi, Abderrazak.................................................................................................................................343

Melz, Tobias.......................................................................................................................................... 293

Meyer, Yann............................................................................................................................................ 83

Millithaler, Pierre......................................................................................................................................1
Mitrou, Giannoula................................................................................................................................... 36

Moulay Abdelali, Hanane......................................................................................................................250

Muller, Stéphane .......................................................................................................................................5
Nobou Dassi, Martial............................................................................................................................ 175

Ouisse, Morvan.......................................................................................................................... 1, 165, 231

Ourahmoune, Reda Elhak..................................................................................................................... 314

Parent, Marie-Océane............................................................................................................................191

Peres, Patrick.........................................................................................................................................280

Petitjean, Benoît...................................................................................................................................... 74

Pezerat, Charles.................................................................................................................. 64, 70, 175, 353

Pfaab, Kilian..........................................................................................................................................221

Picart, Pascal........................................................................................................................................... 70

Poittevin, Julien.......................................................................................................................................70

Puillet, Christian....................................................................................................................................221

Renaud, Franck......................................................................................................................................231

Renno, Jamil............................................................................................................................................36

Riou, Hervé......................................................................................................................................66, 325

Rouleau, Lucie...................................................................................................................................... 150

III



Sadoulet-Reboul, Emeline........................................................................................................................ 1

Salvia, Michelle............................................................................................................................. 105, 314

Schmitt, Nicolas.................................................................................................................................... 307

Schneeweiss, Helmut............................................................................................................................ 293

Tarfaoui, Mostapha..................................................................................................................................16

Tayeb, Adel............................................................................................................................................113

Trameçon, Alain.................................................................................................................................... 332

Troclet, Bernard..........................................................................................................................26, 66, 165

Tufano, Anna Rita................................................................................................................................. 284

Wareing, Andrew...................................................................................................................................269

Wassereau, Thibault................................................................................................................................ 64

Zergoune, Zakaria................................................................................................................................. 120

Zhao, Han ..............................................................................................................................................307

Zine, Abdelmalek.................................................................................................................................. 101

Zoghaib, Lionel....................................................................................................................................... 74

Zouari, Sahar......................................................................................................................................... 360

IV



DYNCOMP’2015 2-4 June 2015, Arles (France)

IDENTIFICATION OF EQUIVALENT ANISOTROPIC
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Email: emeline.sadoulet-reboul@univ-fcomte.fr, morvan.ouisse@femto-st.fr,
noureddine.bouhaddi@univ-fcomte.fr

ABSTRACT

Finite-element models of heterogeneous structures often need to be simplified by the means
of representative equivalent homogeneous materials in order to simulate their mechanical be-
haviours with a reasonably low number of degrees of freedom. In this paper, a novel method of
3D-equivalent material identification is proposed for finite element anisotropic structures and
for models subjected to preloads and friction. Taking into account friction properties as well
as compression preloads resulting from the manufacturing process, an equivalent finite-element
model for the magnetic core of an electric machine stator is created. The simulated modal basis
is then compared to experimental ovalisation modes measured on a real stator, and shows good
accuracy. These results offer interesting perspectives for dynamic simulations of heterogeneous
structures such as industrial electric machines, for which predicting the acoustic behaviours is
a key issue for the automotive industry.
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1 INTRODUCTION

Relatively common in finite-element simulations involving composite structures, so-called “ho-
mogenisation” methods are developed in order to model heterogeneous structures such as lam-
inates or honeycomb plates. For dynamic simulations on industrial electric machine stators,
3D-homogenisation methods for laminated structures may be required as they are built on multi-
layered cores. Some vibration and finite-element modelling analyses have been detailed in the
literature (such as the works [1, 2]). The current simulation procedures on electric motor stators
have the drawback of relying on delicate measurements on costly prototypes.

This is why a new method is proposed, in order to create homogeneous materials whose
elasticity matrices approximate the phenomena existing in the initial heterogeneous structures,
and take into account boundary conditions and external preturbations as well. A numerical-
experimental application on the finite-element model of the magnetic core of an electric ma-
chine stator is proposed, accounting for heterogeneities induced by weld beads as well as the
influence of inter-lamina friction and prestress on the elastic behaviour. In the following sec-
tions, the development of the algorithm for the identification of elastic properties in the case of
triclinic materials will be presented, and followed by applications.

2 IDENTIFICATION METHOD FOR ANISOTROPIC MATERIALS

The identification process must be made on a sample representing the periodicity of the structure
to be homogenised. Taking the influence of perturbations on the elastic properties is a necessary
prerequisite that the finite-element solver used for the identification on the sample must manage.
In order to model friction properties, the elements have to be separated: the interface nodes
are doubled and coincident (as illustrated in the ellipses on Figure 1), and each of them only
belongs to one of the two elements. Then, creating a superelement (with translational degrees
of freedom) at the outer nodes is an efficient way to output a stiffness matrix and merge the
nodes at the interface.
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Figure 1: Example of finite element sample

The 21 independent coefficients of a triclinic elasticity matrix C or the associated com-
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pliance matrix S = C−1 have to be identified independently. The idea of the method is to
recompose Hooke’s law ε = Sσ with 21 independent static simulations on the sample, which
are computed in only a few seconds with any commercial finite-element solver.

3 EQUIVALENT FINITE-ELEMENT MODEL OF AN ELECTRIC MOTOR STATOR
WITH FRICTIONAL AND PRESTRESS EFFECTS

The finite-element model of an industrial “12-8” switched-reluctance motor is used for this
application. An illustration of the model is given on Figure 2. The stator consists in a stack of
several hundreds of steel sheets separated from each other by varnish. During its manufacturing
process, weld beads are applied on the lateral side of the stack, while the magnetic core is placed
under a press. When the pressure is released, the stack is held in one piece by the weld beads,
while in the rest of the structure, the only bond between the sheets are bound together is the
varnish. This is a source of heterogeneities in the behaviour of the entire structure. Therefore,
each colour zone of the model on Figure 2 corresponds to a specific material identification,
and therefore to distinct equivalent material properties. The finite-element model as well as the
material properties are expressed in the cylindrical coordinate system {r, θ, z}.

weld 
beads

yoke

teeth

“prox”

z
r

θ

Figure 2: Magnetic core’s finite-element model (axis along z)

The compression prestress are computed from the value of 2,500 kg applied on the
structure during its manufacturing process, accounting for the distance of the considered zone
to the weld beads. At the interface, the contact properties are described by a Coulomb dry
friction is of coefficient µ = 0.9. Applying the identification method on each zone then yields
the elasticity matrices

C̃yoke =



227 65 29 6 · 10−4 −1 · 10−5 2 · 10−8

227 29 6 · 10−4 −1 · 10−5 5 · 10−8

90 2 · 10−3 −4 · 10−5 1 · 10−8

45 3 · 10−3 4 · 10−1

sym. 45 4 · 10−1

78.1


· 109 (1)

3
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and

C̃teeth =



233 69 43 2 · 10−7 −2 · 10−7 3 · 10−8

233 44 2 · 10−7 −2 · 10−7 1 · 10−8

14 2 · 10−7 −2 · 10−7 2 · 10−8

3.3 2 · 10−4 1 · 10−1

sym. 3.3 1 · 10−1

55


· 109 (2)

and the orthotropic material properties for the zone “prox”: Ẽr = Ẽθ = 205GPa, Ẽz = 157GPa,
G̃zθ = G̃zr = 51.2GPa, G̃rθ = 82.1GPa, and ν̃θz = ν̃rz = ν̃rθ = 0.25. The weld beads
are modelled with isotropic steel, such as E = 207GPa and ν = 0.29. The same density
7, 750 kg ·m−3 is applied to the entire structure.

A modal basis is simulated in real domain between 0 and 10,000 Hz from the entire
magnetic core’s finite-element model. This simulated modal basis is compared with a set of
purely radial modes (of spatial orders 2, 3, 4, 5 and 0), extracted from frequency response
functions measured with an impact hammer on the corresponding real stator’s magnetic core.
These modes are sometimes referred to as “cylinder” or “ovalisation” modes, and are critical
for the acoustic behaviour of the entire stator [2]; being able to predict them accurately is thus
of particular interest. Finally, the average of absolute frequency discrepancies between simu-
lated and measured modes is 2.83%, while the average MAC-value (expressing the similarities
between paired mode shapes) is at 71.9%. Therefore, these results show that the equivalent
finite-element model is able to predict the measured ovalisation modes with good accuracy, and
without need of expensive updating procedures.

4 CONCLUSION

In this paper, a novel method for identifying equivalent materials to anisotropic structures was
proposed. It has been shown that the method is also able to identify equivalent elasticity ma-
trices for an electric machine stator subjected to friction and prestress, and its effectiveness has
been validated with experimental data. Additionally, this identification method can be applied to
superelements, unlike existing homogenization techniques, and can therefore convert stiffness
matrices into equivalent elasticity matrices.
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ABSTRACT 
 

The launch vehicles are subject to severe dynamic loads at lift-off and during flight ascent.  
Moreover, a major part of European launch vehicles are of composite construction. Thus, a 
robust design requires a proper consideration of uncertainties in excitations and materials. A 
non-parametric methodology was experienced on the condensed finite element models of parts of 
the ARIANE 5 launcher with the objective of releasing less dimensioning but still justified 
mechanical specifications to get used by the launcher sub-contractors. Such methodology allows 
introducing different level of uncertainties on parts of the launcher depending on the complexity 
of elements and their impact on the dynamic phenomenon targeted. The article details the 
methodology implementation already achieved on ARIANE 5 on the solid rocket booster pressure 
oscillation load case which is one of the driving load case regarding the amplitude of the low 
frequency vibrations on the launcher. 
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1 INTRODUCTION 

A launcher FEM is the result of the assembly of numerous sub-structures FEM provided 
by sub-contractors. Uncertainties at launcher level cover not only scattering of materials and 
modeling but include also discrepancies introduced by operational conditions of use (with 
different boundaries conditions than the ones used to set-up and validate the sub-structure FEM) 
and by connections modeling between sub-structures. Mastering of uncertainties in structural 
dynamics is hence a challenge that can be handled through a various set of methodologies. [1] 
gives a global overview of the research field that can be subdivided, on an engineering 
perspective, into “microscale” schemes dealing with physical properties of FE elements and 
“macroscale“ schemes dealing with mass, stiffness, damping matrices properties of a FE sub-
component.  

• Microscale (parametric) methods are adapted to small models but require prohibitive 
CPU times when applied to large FE models like in a launcher modeling case. 
Furthermore, they take only into account physical parameter uncertainties. 

• Macroscale (non-parametric) methods are introducing uncertainties at a macroscopic 
level of analysis, e.g. on matrices of super-elements of the assembled FEM. The main 
methods include Gaussian orthogonal ensemble, non-parametric approaches and 
matrix scaling. 

These approaches, coupled with simulation methods (Monte-Carlo, Factorial Design) are 
much less CPU demanding and allow introducing macroscopic perturbation covering more than 
physical properties uncertainties. The main drawback is that the link between tuning factors and 
design parameters is not as straightforward as for the local methods. The interpretation of the level 
of uncertainties and its physical likelihood is less direct. A first trade-off between the methods led 
us introducing uncertainties in the launcher FEM through global approaches, e.g. matrix scaling 
and non-parametric techniques. Aside CPU time considerations, these methods are also well 
adapted to the launcher dynamic modeling based on assembly of different Craig-Bampton 
condensed FEM from sub-contractors that can only be scattered through their mass, stiffness and 
damping matrices, native FEM being rarely accessible at launcher system level.  

1.1 Matrix scaling 

The matrix scaling consists in introducing perturbations into mass, damping and stiffness 
condensed matrices [ ]M ,[ ]K , [ ]C  used in the structural dynamics equation (1) with scalar 
operators Mδ , Cδ , Kδ  associated to a probability distribution. Mechanical uncertainties are then 

characterized by random matrices [ ]M~ , [ ]C~ , [ ]K~  (2). 

 [ ]{ } [ ]{ } [ ]{ } { }extFXKXCXM =++ ~~~   (1) 

 [ ] [ ]M.δM~ M= , [ ] [ ]C.δC~ C= , [ ] [ ]K.δK~ K=  (2) 

We applied this technique for simple sub-structures presenting uniform characteristics 
(isotropy of material and/or geometry) where the risk of non-physical likelihood introduced by the 
scaling is limited.  

 
Figure 1: ARIANE 5 payload structure 
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In the ARIANE 5 launcher case, elements like payload adaptors (Figure 1) are relevant for 

such a technique. As a result, the matrix scaling is also suited for models condensed statically via 
the Guyan method.   

1.2 Random matrices 

This technique [3] is a generalization of the matrix scaling applied on FEM super-
elements with stochastic matrices applied on mass, damping and stiffness matrices (3) instead of 
scalar operator. The random matrices are then defined by: 

 [ ] [ ] [ ][ ]MM
T

M L.G.LM~ = , [ ] [ ] [ ][ ]CC
T

C L.G.LC~ = , [ ] [ ] [ ][ ]KK
T

K L.G.LK~ =  (3) 

Where [ ]KCM ,,G  are stochastic initiation matrices and [ ]KCM ,,L  are the mass, damping and 
stiffness matrices expressed by the Cholesky factorization (4). 

 [ ] [ ] [ ]X
T

X L.LX =  with MX = , C,  or K (4) 

Guaranteeing the random matrices being physically admissible, meaning that they give 
admissible solutions of  (1), requires the stochastic initiation matrix [ ]G  verifying the following 
conditions [3], called the available objective information: 

• Random matrices [ ]G  are defined in the probability space               
with values in           . 

• The mean values of these random matrices must be equal to [ ]I  so that 
[ ]( ) [ ]CKMCKM ,,~,~,~ =ε  

• [ ] ∞<




 − 21

F
Gε , where 

F
is the Frobenious norm in order to guarantee that the 

matrix inverse always exists, 
Nevertheless, the amount of uncertainty introduced in the model via this technique can 

still be assessed thanks to a scalar quantity. This so called uncertainty tuning parameter δ  applied 
on [ ]M ,[ ]C  or [ ]K  is defined  by (5): 

 
[ ] [ ]
[ ] 2

F

2

F

I

IG
δ

−
=  (5) 

As a result, an infinite amount of stochastic matrices [G] corresponding to the same level 
of global uncertainty can be generated. This parameter  δ  would thus be an equivalent of the 
standard deviation of a scalar uncertainty: infinity of random values can be generated for a given 
standard deviation in accordance with a defined distribution law. The distribution law associated 
to those matrices [3] has been defined in order to respect the available objective information and 
to minimize the entropy introduced in the system: 

 
])([

2
1-n

2
)-(11)(n

G(R)M[G]
22

2

edet([G])C([G])1([G])P
Gtr

dd
d +

+
⋅⋅⋅= +  (6) 

Where: 
• det([G]) is the determinant of the [G] matrix, 
• ])([Gtr its trace, n its dimension, 

• 
(R)M1 +   is a function equal to 1 as the matrix belongs to (R)M+ , and zero otherwise, 

• GC  is a positive normative constant, detailed in [3]. 
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Unlike the matrix scaling method where the uncertainties are introduced uniformly on the 

FE matrices of each super-element, the non-parametric methodology allows introducing local and 
independent uncertainty factors. 

2 A STUDY CASE –ARIANE5 SOLID ROCKET BOOSTERS FIRST ACOUSTIC 
MODE LOAD CASE  

2.1 Load case characteristics 

One of the main mechanical load case encountered in ARIANE 5 flight is the first Solid 
Rocket Boosters (SRBs) acoustic mode load case [2]. This load case is characterized by sine 
bursts excitations generated by both SRBs (Figure 2) and gives signification vibration responses 
on all parts of the launcher. 

 
Figure 2: ARIANE 5 SRBs first acoustic mode load case 

 
The flight analyses show that the vibrations levels are generated mostly by global modes 

of the launcher (bending modes, tank modes) that are dynamically driven by global mechanical 
characteristics of launcher sub-components. It is then well suited for the non-parametric 
uncertainties methodology applied on mechanical consistent ensembles (stages, skirt…). In 
consequence, we cut the launcher FEM into super-elements (Figure 3) on which uncertainties 
could be applied.  

 
Figure 3: Launcher cutting into elementary mechanical models 
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This includes Craig-Bampton (non-parametric uncertainties) and Guyan (matrix scaling) 

condensation schemes as well as explicit modeling (matrix scaling) for some simple elements. As 
the relevant values of uncertainty tuning parameters δ on the different launcher parts cannot be 
fixed thanks to physical considerations, an inverse problem has to be solved. The aim is then to 
find values for these parameters able to predict responses consistent with what has been observed 
in flight and also with a certain degree of conservatism in order to have a robust simulation tool. 
The identification of uncertainties factor to get applied on super-elements to reach a relevant 
coverage of predictions requires metrics in both frequency and time domain. ARIANE 5 load case 
predictions are indeed performed in these two spaces with a global objective of releasing 99% 
envelope vibration levels. 

2.2 Time domain ( tA ) & frequency domain ( fA ) sensitivity metrics 

In the time domain, the metric is defined as the scalar ratio between maximum values of 
99% envelope and nominal prediction (7). 

 
(t))(γmax

(t))(γmax
A

nominalt

99%t
t =  (7) 

In the frequency domain, the metric is defined by the weighted sum of the mean 
amplification ratios at resonance calculated on the different peaks computed through shock 
spectra responses (8). 

 ∑
∫

∫
=

⋅=
peak

nom
2

nom
1

nom
2

nom
1

N

1i
(i)f

(i)f
nominal

(i)f

(i)f
99%

if

(f)dfγ

(f)dfγ

CA  with 

∑
∈

∈=
peak

nom
2

nom
1

nom
2

nom
1

N

i
99%

(i)]f(i),[ff

99%
(i)]f(i),[ff

i

(f))(γmax

(f))(γmax
C  (8) 

The 99% envelopes are assessed through quantiles computations based on the several 
thousands of simulations representing one single uncertainty case where different super-elements 
are scattered with a specific value of uncertainty parameter δ (Figure 4). 

 
Figure 4: Nominal and 99% predictions 

2.3 Calibration of  Mδ  and Kδ  

As a first step, unitary sensitivity studies were performed to identify driving uncertainty 
factors w.r.t dynamic responses of the launcher. Each super-element was scattered separately 
considering four values of tuning factor Mδ  and Kδ selected between 10% and 40%, represented 
each time by about 2000 draws of different stochastic matrices [G] introducing the required global 
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degree of uncertainty on the related launcher part. Each assembled model was then used for a 
vibration prediction corresponding to the SRBs first acoustic mode load case in both frequency 
and time domains Using coverage metrics tA  and fA , sensibility plots were computed on every 
launcher’s point of interest corresponding to sensor locations in order to compare the results with 
the flight data. Families were identified based on their visual similarity of behavior and their 
spatial location on the launcher. Similar footprints were identified on spatial location families on 
the launcher which allowed defining spatially correlated zone regarding the load case dynamic 
responses on spatial zones. An example is given for the blue delimited zone on the Figure 5. 

 
Figure 5: Sensibility footprints vs. mechanical models within a spatial family 

 
The family segmentation gave similar results when performed in time and frequency 

domains, which looks logical as the physic of the load case is unique behind the time or frequency 
approaches. Hence, the non-parametric methodology allows putting uncertainties on a FEM on a 
limited spatial zone. This opens a large spectrum of possible tuning consistent with uncertainties 
of one or several super-elements. Nevertheless, the single footprints, if useful to have a first trend 
of the relative importance of uncertainties applied on super-elements, are not adapted to multi-
variable uncertainties tuning; this requires setting-up multi-dimensional surfaces whose 
exhaustive computation would be still too demanding regarding CPU time.To overcome this 
drawback, an optimized factorial design coupled with relevant simplifications was set-up in order 
to estimate reliably the response surfaces approximating the responses amplification as a function 
of the various uncertainties within an acceptable amount of computations. 

3 SURFACE RESPONSES FACTORIAL DESIGN APPROACH 

3.1 Modeling of factorial design 

The aim of the factorial design is to have an analytical formulation as accurate as possible 
in order to predict quickly the launcher responses for any set of uncertainties applied on its 
structures without generating the 2000 stochastic matrices or computing the corresponding 
responses with the FEM. The surface response was addressed through a Taylor development of 
the computed sensitivity metrics (9).  

εXXXXXα...XXαXαα)X,X,X,X,(XA
mlkjim),l,k,j,(i,

mlkjiijklm
jij),(i,

jiij
i

ii0mlkjit/f +++++= ∑∑∑
≤≤≤≤≤

  (9)  
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With:  
• At/f : the time/frequency coverage of the response in one point of the scattered launcher 

with respect to the nominal response (no uncertainty in the model)  
• iX  : centered uncertainty level (mass/stiffness) applied to the super-element i, 

2.0
2.0−

= i
iX

δ
 

• iα  : response surface coefficients to be identified 
• ε  : residue 
 
The 14N =  dimension corresponds to the number of super-elements considered for the 

non-parametric method, e.g. stiffness and mass uncertainties tuning factors applied on 7 super-
elements. The polynomial form is in accordance with sensibility footprints that didn’t put in 
evidence any steep variations but rather continuous evolutions. The factorial design setting-up is 
based on the selection of optimal sets of values for input parameters )X,X,X,X,(X mlkji  

allowing the minimization of the residual factors { }iεε  for P realization with NP ≤ . The 
identification problem of the response surface coefficients can thus be defined by the linear 
system (10). 

 [ ] )(, ),(
1

ℜ∈

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
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
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










PN

N

i

P

i

N

MXX
y

y

ε

ε

α

α
   (10)  

With:  
• y  : realization vector gathering the results of the experiences attempted 
• X : factorial design matrix gathering the selected values of the input parameters and 

defining the different independent experiences performed to have the realization 
vector. 

Such system is classically solved through a regression method by increasing the number 
of experiences from P to N and computing most likely parameters α~ (11). 

 ( ) { }YXXXα~ T1T ⋅⋅⋅=
−

 (11) 

Nevertheless, with formulation (8), the resolution of the order N exhaustive Taylor 
development requires to identify a very large number of coefficients (12): 

 ( )∑
=

−
−⋅−⋅++=

N

i

N
i

N
i CiNNCim

1

1
11d  (12) 

For 14 variables, it is equivalent to 761.856 coefficients, so potentially as many 
experiences to perform, representing up to more than 3000 years of CPU time. As a result, such a 
problem cannot be solved now, except by massive parallelization of CPU’s. Thus, dimension of 
the problem was reduced (13) in order to ensure admissible computation time but still maintaining 
an acceptable accuracy of the response surface. A factorial design approach based on 
Rechtshaffner formulations [5] was set-up accordingly. 

 ∑∑∑
−

= +=

++=
1

1 1
0

N

i

N

ij
jiij

i
ii XXXy ααα  (13) 
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Relative weights on applied uncertainties can be assessed through jij),(i,ij,α <  (order 2 
interaction) and kjik),j,(i,k,ij,α <<  (order 3 interaction) of (9). Their importance is determined by the 
measurement of the difference in predicted levels with and without this term (Table 1). 

 
Table 1: Cross-interaction metrics 

 
The Figure 6 presents a typical interaction plot where the ground surface is offset at 15%, 

meaning that only differences higher than this threshold appear. The stiffness uncertainties cross-
interactions are presented, IxJ  tag corresponding to the cross interaction between super-elements 
I and J along the different response locations. 

 
Figure 6: Stiffness cross-interactions between super-elements 

 
The factorial design approach is thus a powerful tool that will be used to set-up a generic 

uncertainties treatment to be used to release justified and less dimensioning specifications. As a 
first step, the methodology was used to tune uncertainty factor required to cover flight vibrations 
by prediction thanks to the polynomial approximation of the launcher responses amplification. 
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4 CALIBRATION OF UNCERTAINTIES TUNING FACTORS 

The weight to be applied on uncertainties tuning factors can be assessed by analysis of 
flight vibration records using coverage metrics and the analytical behavior of the response 
amplification of the scattered launcher given by the response surface (13). These populations were 
then reused to extrapolate tuning factors to get used for releasing 99% envelope vibration levels. 
Results presented here are a first flight coverage analyses.  

4.1 Flight coverage tuning factors 

The coverage level is defined (in the frequency domain) by (14).  

 )δ,(δf)δ,δ( K
j

M
jF

/K
j

M
j ⋅= volnom

FF CC   (14) 

• volnom
FC / is the ratio of nominal (e.g. without uncertainties) predicted responses vs. 

flight measured ones (Figure 7), 
• Ff  is the response surface approximating the response amplification of the scattered 

launcher with respect to the nominal one via the polynomial expression (13). 
The frequency analyses of flight records were reached by shock spectra analysis.  

 
Figure 7: Flight average coverage 

 
A vector objective function (15) was defined on the uncertainty vector δ = (δM

1, …, δM
7, 

δK
1, …, δK

7) and optimization algorithms were used to find tuning parameters allowing prediction 
being as close as possible as flight observations. 

 { }1)()( −⋅= δδ FFobj fCF   (15) 

The optimizations were realized through Monte-Carlo simulations that demonstrated a 
convergence of uncertainties tuning parameters into limited intervals.  
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The table 2 illustrates the results for stiffness uncertainties. 

 
Table 2: Optimized uncertainties tuning parameters 

 
The solution domain corresponding to a flight event is only a small sub-domain of the 7th 

dimension space (stiffness uncertainties considered here) but is not singular, meaning that 
different tuning factors were found admissible regarding the objective function and physical 
likelihood. Moreover, it has been numerically assessed that the solution sub-domain was 
continuous: for a specific solution vector δ0, the vectors δ0+ dδ with Od dd <<  belong also to 
solutions sub domain. Different convergence algorithms were tested to verify the robustness of 
the solution domain and find one specific set of uncertainties optimizing the flight coverage by the 
scatter launcher assembly. They confirmed the tuned domains, without noticeable reduction. 
These optimums identified thanks to the polynomial approximation of the launcher behavior have 
been checked by re-computing directly the responses of the corresponding scattered launcher with 
the finite element model and the related scattered matrices of its sub-structures. Those final direct 
computations (not the polynomial prediction) for two optimized uncertainties sets are presented in 
Figure 8 and compared with the nominal simulation by showing the response amplification of 12 
observation points with respect to the flight measurements. The unity coverage diagram (plotted 
in blue) represents the target level of amplification for the optimization process and also the 
threshold that should not be underpassed. 

 
Figure 8: Optimization flight coverage results 
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The optimal tunings are giving a closer coverage flight than nominal simulation. They are 

demonstrating that predictions closer to flight can be achieved through application of non-
parametric uncertainties technique to super-elements. 

5 CONCLUSION 

The application of non-parametric uncertainties propagation through factorial design on an 
ARIANE5 dimensioning load case proved to be fruitful. With a relatively limited time 
computation, it is possible to analyze unitary and cross-interaction of mass and stiffness 
characteristics of the main sub-part of the launcher. Using flight measurement feedback allows 
quantifying and justifying uncertainties set to be applied on the different sub-structures flight by 
flight.  
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ABSTRACT 
 

Split Hopkinson Pressure Bar (SHPB) is one of the most important and recognized apparatus 

used for characterizing the dynamic behavior of materials. In the first part, the results from a 

series of SHPB tests on the woven composites are presented in this paper. These tests were 

done in two configurations: in-plane and out-of-plan compression test. It is observed that the 

failure strength varies with the different loading directions. The results indicate that the stress–

strain curves, maximum compressive stresses and strains evolve as strain rate changes. In the 

second part of this study, numerical models without damage are developed to investigate the 

validity of assumptions of compression Split-Hopkinson Pressure Bar technique. Abaqus 

software was used for the numerical simulation. The results obtained by numerical 

investigation (finite elements) of SHPB are compared with the in-plane and out-of-plan 

compression test of a woven composite. A good correlation was noted between the 

experimental and numerical results which allows validate the numerical approach used. 
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1 INTRODUCTION 

Composite materials exhibit favorable mechanical properties over metallic materials and hence 

are increasingly considered for high technology applications, particularly in thenavalfield. 

Some of these applications are in structures subjected to dynamic loads. Since behavior of 

composites is known to depend on the rate of loading, knowledge of the constitutive behavior 

and dynamic strength (which is usually higher than the static value) is highly desirable for 

designers of structures intended to withstand dynamic loads [1]. Dynamic behavior of 

materials in the range of 100−10000 s
−1

 strain rates has been widely studied by the Split 

Hopkinson’s Pressure Bars (SHPB) [2]. Griffiths and Martin [3] investigated the dynamic 

behavior of unidirectional carbon fiber composites at high strain rates to determine how the 

material behavior is dependent on fiber volume fraction and fiber orientation. Chen et al. [4] 

investigated the effect of strain rate on the compressive and tensile behavior of a 0/90 carbon 

fiber reinforced resin matrix composite. Hosur et al. [5] tested the compressive properties of 

carbon/epoxy laminated composites at three different strain rates of 82, 164 and 817 s
-1

 along 

in-plane directions. Elanchezhian et al. [6] studied the effect of varying strain rates and 

temperatures on the Mechanical behavior of glass and carbon fiber reinforced composites. 

Sierakowski et al. [7] investigated steel/epoxy composites in compression up to 1000 s
-1

. Jenq 

and Sheu [8] examined the high strain rate behavior of stitched and unstitched glass/epoxy 

composites. Tarfaoui et al. [9, 10] tested the mechanical behaviors of angle-ply (0°, ±20°, 

±30°, ±45°, ± 60°, ±70° and 90°) plain weave composite laminates subjected to in-plane and 

out-of-plane high strain rate compressive loading. The stress-strain curves of the composite 

laminates showed that the material is strongly sensitive to fiber orientation and loading 

direction. El-Habak [11] studied the mechanical behavior of woven glass fiber reinforced 

composites at failure strain rates ranging from 100 to 1000 s
-1

. He studied the effect of sizing 

of the fiber, and two different resin systems: epoxy and vinylester. He found that, while sizing 

did not influence the high strain rate behavior, composites made of vinylester matrix yielded 

higher strength. Woldenbet and Vinson [12] studied the effect of specimen geometry in high 

strain rate testing of graphite/epoxy laminates. Harding [13] studied two woven glass/ epoxy 

material systems in compression up to 860 s
-1

 using cylindrical and thin strip specimens. The 

results for both specimen geometries indicated a significant increase in the initial modulus, 

strength and strain to failure with increasing strain rate. 

  In the present work, in-plane and out-of-plan compression behavior of an E-glass fiber 

reinforced vinylester composite at high strain rates was determined. Composite were prepared 

in 0°/90° orientation by using infusion process, tested in Split Hopkinson Pressure Bar 

apparatus, and modeled with explicit commercial finite element code Abaqus [14].  

2 EXPERIMENTAL PROCEDURE 

The woven E-glass/vinylester laminate composites samples used in our experiment were 

provided by EADS Composites and were manufactured for the naval applications. The sample 

has 52 layers with a vinylester resin matrix DION 9102. Each layer is a plain weave 

construction (50% weft yarns per 50% warp yarns) made of E-glass fabric, which create 

orthotropic mechanical properties in the three orthogonal directions. The thickness of the 

samples is 10.0 mm and their density is 1.85 g/cm
3
. The overall fiber volume fraction is 49% 

for the composite. The physical and mechanical properties of the vinylester resin and E-glass 

fibers are shown in Table 1. For dynamic tests, the cubic specimens with side length 10.0 mm 

for out-of-plane and 13.0 mm for in-plane loading tests, are considered, respectively. The 

specimen and loading direction, in-plane, and out-of-plane are presented in Figure 1. The faces 
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of the specimens were polished with 1000-grit sandpaper to ensure parallel loading edges. To 

avoid uncertainties related to size effects, the specimens in all the tests are of the same 

geometry. 

 

Characteristic E-glass fiber Vinylester resin 

Density (kg/m
3
) 2540 1050 

Young modulus in tension (MPa) 74000 80 

Shear modulus (GPa) 33.3 1.24 

Poisson Coefficient 0.22 0.35 

Tensile strength (MPa) 2400 80 

Compressive strength (MPa) 1450 115 

 

Table 1. Characteristics of the E-glass fiber and the vinyl ester resin 

 

 
 

Figure1. Specimen and loading direction, (a) in-plane and (b) out-of-plane 

 

3 EXPERIMENTAL RESULTS 

In these dynamic compression tests, a cubic sample of size 13 mm × 13 mm × 10 mm, is 

placed between the two bars, of the same diameter of 20 mm. The striker, incident and 

transmitted bars have a length of 400 mm, 1985 mm and 1845 mm, respectively. These bars 

are correctly aligned and are able to slide freely in the frame of the apparatus. The composite 

specimen is not attached to the bar in order to prevent the perturbation of measurement due to 

additional interfaces, Figure 2. 

 
Figure 2. Schematic of compression SHPB set-up. 

 

  Before conducting the dynamic tests on the Hopkinson bar, it is necessary to ensure 

that these tests can be reproduced. With this objective in mind, for each loading direction, a 

minimum of two tests were carried out at the same impact pressure in order to analyze the tests 

reproducibility. As Figure 3 shows, it is noted that the tests are repeatable and this was checked 

for each test. For in-plane and out-of-plane tests, results for compressive strain rate between 

293 s
-1

 and 1902 s
-1

 are obtained using SHPB. 
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Figure 3. Test reproducibility, P=0.1 MPa – V=8.29 m/s 

 

3.1 In-plane test 

3.1.1 Mechanical behavior 

The laminate specimens [0/90]26 were subjected to in-plane loading with nine different impact 

pressures of the striker bar on the incident bar: 0.5, 0.7, 1, 1.2, 1.5, 1.7, 2, 2.2 and 2.5 bar (50, 

70, 100, 120, 150, 170, 200, 220 and 250 (×10
-3

 MPa)). The typical strain rate-time obtained 

from tests on the Hopkinson bar is shown in Figure4. The strain rate evolution is sensitive to 

the entry pressure P in the chamber of compressed air and the loading direction. In the first 

phase, the strain rate increases rapidly, then decreases and remains fairly constant for an impact 

pressure from 0.5 to 1.7 bar. Indeed, the increase in impact pressure shows that the strain rate is 

not constant in the second phase. The presence of a second peak is the principal characteristic 

of these curves, which characterizes the onset of macroscopic damage [9, 10]. The critical 

pressure responsible for the appearance of second peak is between 1.7-2 bar. For non 

damaging tests, the fall of strain rate reaches negative values, which correspond to the 

springback in the sample. Figure5 shows the stress/strain for nine strain rates of 224, 339, 439, 

454, 545, 603, 656, 700 and 882 s
-1

 which correspond respectively to 0.5, 0.7, 1, 1.2, 1.5, 1.7, 

2, 2.2 and 2.5 bar impact pressure. Dynamic compressive behavior of the composite is strongly 

influenced by the strain rate. The stress–strain behavior in each case was similar during the 

linear elastic behavior, whereas the stress increased with the increasing strain rate. For non 

damaging tests, we observed that the sample tends to take again its initial state, with presence 

of plastic deformation. On the other side, for damaging tests, the sample continues to deform. 

Also, a brittle behavior is noted, which is controlled by matrix failure. The nonlinearity of the 

stress-strain curves is different and corresponds to different damaging modes. From Figure5, 

the Young modulus, maximum compressive stress and failure strain have been obtained and 

listed in Table 2. For in-plane loading, the dynamic stiffness Edynamic remains almost constant 

and the maximum stress σmax increases with the impact pressure until a pressure threshold is 

reached from which the tendency is reversed; i.e. they decrease with the increase of impact 

pressure. The thermal softening due to inelastic heat dissipation and damage may explain this 
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behavior. Similar behavior has been reported by Tarfaoui [15] for SHPB testing of 

Glasse/Epoxy laminated composites. 

 

  

Figure 4. The strain rate–time curves of 

the specimen under in-plane loading 

Figure 5. The stress–strain curves of the 

specimen under in-plane loading 

 

Strain  rate (s
-1

) 
Young  modulus 

(GPa) 

Maximum stress 

(MPa) 
Maximum strain (%) 

293 21.01  207.58  1.1  

339 21.67  297.30  1.7  

439 21.27  355.92  1.9  

454 21.91  390.38  2.1  

545 21.31  436.62  2.4  

614 21.10  475.91  2.6  

903 19.94  481.34  2.8  

922 21.58  519.71  2.8  

1061 16.49  445.43  3.5  

 

Table 2. Mechanical properties of the woven composites subjected to in-plane loading 

3.2 Out-of-plane test 

3.2.1 Mechanical behavior 

The out-of-plane dynamic compression response of the materials was also investigated. 

Figure6 give the evolution of the strain rate of [0°/90°]26 samples for seven impact pressure. 

This figure shows the same likely than to in-plane tests. For undamaging tests, the fall of strain 

rate passes by negative values, which correspond to the springback in the sample. On the other 

hand, the appearance of a second peak characterizes the onset of macroscopic damage. The 

critical impact pressure at which the second peak appears is between 5.17-5.25 bar 

(respectively 1813-1902 s
-1

). The compressive stress-strain curves at strain rate from 659 to 

1902 s
-1

 for the composites are presented in Figure7. From this figure, the Young modulus, 

maximum stress and failure strain have been obtained and listed in Table 3. It is observed also 

an increase of the mechanical properties, stress and strain, with the increase of the strain 

rate.However, the elastic modulus seems not to change before the appearance of the damage. 

 

20/361



DYNCOMP’2015  2-4June 2015, Arles (France) 

 

 

6 

 

  
Figure 6. The strain rate–time curves of the 

specimen under out-of-plane loading 

Figure 7. The stress–strain curves of the 

specimen under out-of-plane loading 

 

Strain  rate (s
-1

) 
Young  modulus 

(GPa) 

Maximum stress 

(MPa) 
Maximum strain (%) 

659 8.64 263.80 2.56 

995 8.74 381.56 5.54 

1012 8.27 386.09 5.85 

1182 8.11 435.22 6.67 

1540 7.95 518.00 8.20 

1676 7.55 551.99 9.80 

1813 7.50 565.74 9.60 

1902 4.05 357.43 11.00 

Table 3.  Mechanical properties of the woven composites subjected to out-of-plane loading 

4 NUMERICAL SIMULATION 

4.1 FE model 

Split Hopkinson Pressure Bar tests were modeled to study the stress wave propagation and 

dynamic deformation of the composite materials. Commercially available finite element 

software ABAQUS was used throughout the numerical studies. Considering the arrangement 

showed in Figure 2 and taking into account the dimensions of the equipment available in the 

Ship Structures Mechanics Laboratory of the ENSTA Bretagne, both incident and transmitted 

bar were modeled with a diameter of 20 mm and a length of 1985 mm and 1948 mm, 

respectively. Likewise, the striker had 400 mm in length and the same diameter. The incident, 

transmitted and the striker bars were modeled as an isotropic elastic material. Meanwhile the 

specimen was a common size of 13 x 13 x 10 mm
3
 and was modeled with an orthotropic 

elastic material. This composite specimen is made up of 52 stacked plies [0°/90°] with a ply 

thickness of 0.195 mm. An assembly containing all parts (bars, striker and specimen) was 

modeled using three-dimensional solid 8-node linear brick elements, with reduced integration 

and hourglass control (C3D8R in ABAQUS library). The incident, transmitted and the striker 

bars had uniform mesh into 104192, 97870 and 21890 elements, respectively. The specimen is 

meshed into 8788 elements. Mesh configuration of the composite specimen appears in Figure 

8, while in turn Figure9 presents a detail of the full model assembly. At the interfaces of 

different parts of the SHPB setup, a surface to surface contact is defined to simulate the 

interaction at these interfaces, allowing for compressive loads to be transferred between the 
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slave nodes and the master segments. Material properties used in the finite element code are 

shown in Table 4 and Table 5. The skins with a negligible thickness acting as gauges were 

placed on incident and transmitted bars, with the purpose to determine the incident, transmitted 

and reflected waves. These skins were modeled using the mesh with membrane elements 

M3D4R (A 4-node quadrilateral membrane, reduced integration, hourglass control).Initial 

velocity conditions were applied to the whole striker volume (all nodes), whose value exactly 

corresponded to the actual one, e.g. V=5 m/s. Initial boundary conditions were applied to the 

striker and the bars such that only movement in one direction was allowed.The different 

physical parameters (loads, velocities, strains…) can be determined by the numerical model 

and compared with experimental results: 

- The loads "Fi"and "Ft"are determined at the incident and transmitted bar in contact with 

the specimen, the loads are deducted from the values of stress applied at the nodes of 

each of the elements.  

- The incident velocity "Vi" and transmitted velocity "Vt" of the bar are deducted at the 

surface of contact between the incident and transmitted bars with the specimen, Figure. 

10.   
 

 

 

Material 
Density 

(Kg/m3) 

Young’s 

modulus (GPa) 

Poisson’s 

ratio 

Elastic wave speed, 

(m/s) 

Steel (Maraging) 7819 183.9 0.32 4849.70 
 

Table 4: Material properties of bar materials used in numerical study 

 

 

E1 

(MPa) 

E2 

(MPa) 

E3 

(MPa) 
ν11 ν23 ν13 

G12 

(MPa) 

G13 

(MPa) 

G23 

(MPa) 

23711 23711 9000 0.151 0.2 0.2 4498 1456 1456 
 

Table 5: Material properties of the composite 
 

 

Figure 8. Mesh configuration of composite specimen 

 

 

Figure 9. Numerical model of SHPB apparatus 
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Figure 10. Correlation parameters of the model 

 

4.2 Results of Numerical Study 

SHPB experiments conducted with composite were numerically modeled using ABAQUS 

finite element software. The SHPB experiments done with composite subjected to in-plane and 

out-of-plane were compared with the numerical study which is presentedin Figure 11.In this 

figure, blue curve represents the SHPB experiment of the composite while red curve represents 

the result of numerical study and both curves were shifted in time domain to simplify 

distinguishing.In general, a good agreement between the measured results and finite element 

results is observed for in-plane loading direction. 

For in-plane simulations, the strain of incident and reflected compression wave measured 

by the jauge J1, gives a good estimate of the experimental results. This also applies for incident 

and transmitted velocity. Indeed, the numerical velocity is taken at the incident surface of the 

bar in contact with the sample. The evolution of the incident and transmitted loads, given at 

two interfaces of the bars in contact with the sample are well simulated. We have the same rise 

and fall of the load,but we haven't the same level of the maximum load.At the experimental 

and numerical results we find a slight general difference which may be related to the 

experimental conditions:  

 the geometry of the samples is not perfectly cubic,  

 the parallelism of the faces in contact with the bars, 

 

  

(a) Incident strain (b) Transmitted strain 
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(c) Incident velocity (d) Transmitted velocity 

  

(e) Incident load (f) Transmitted load 

Figure 11. Experimental and numerical results, in-plane test, P=0.5 bar. 

5 CONCLUSION 

A Split Hopkinson pressure bar was used to conduct high compressive strain rate experiments. 

Samples were subjected to in-plane (IP) and out-of-plane (OP) tests. The first observation can 

be made, for IP and OP tests, is that materials show a strength dependency on loading direction 

and impact pressure. Moreover, the stress-strain curves manifest significant influence of the 

strain rate on the composite mechanical behavior. The maximal stresses achieved depend on 

the strain rate; the higher the strain rate, the higher the stress level. The maximal stresses 

obtained both during dynamic compression tests are higher for the composite subjected to out-

of-plane loading. Damage appears only for specific impact pressure on the samples: 1.7 - 2 bar 

for in-plane loading and 5.17 - 5.25 bar for out-of-plane loading.  

  In the second part of this study, a three-dimensional numerical model of the SHPB test 

including the incident bar, transmitter bar, the projectile and the specimen was developed. The 

dynamic compression response was simulated using ABAQUS structural analysis software. 

Numerical models without damage were developed and successfully predicted the elastic 

behavior of the materials. The results predicted by the numerical simulation are consistent with 

observed experimental results with a slight difference, which may be related to the 

experimental conditions: the geometry of the samples is not perfectly cubic, the parallelism of 
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the facets in contact with the bars…. This study is to be completed by developing the model 

which takes into account the damage. 
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ABSTRACT

In this work, the sound transmission through a sandwich cylinder with a poroelastic core is
studied analytically. The cylinder is composed of two orthotropic skins, modeled with a shell
theory, and a poroelastic core modeled with the full 3D Biot’s theory. Thus, a mixed “Biot-
Shell” analytical model is presented in this paper. First, the motion of the sandwich cylinder
obtained with this mixed “Biot-Shell” model is presented. Then, the model is used to calculate
the sound transmission in the case of an excitation by an external oblique plane wave. A very
good agreement is found when the results are compared to those obtained with a finite element
model. Finally, some results are presented and the Transmission Loss (TL) is studied in different
configurations. The main conclusion obtained from the results is that the poroelastic coating
can significantly improve the TL of a cylindrical structure in mid- and high frequencies.
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1 INTRODUCTION

Multilayer cylinders are widely used in aeronautics and aerospace industries. Generally de-
signed to be as light as possible, these structures must also take into account the problem of
inner noise transmission. Indeed, protection against noise is still necessary in such applications,
whether it is for the passengers comfort or the payload protection. Thus, an optimization tool
is necessary to reduce the total weight of the structure while increasing its acoustic efficiency.
Consequently, fast analytical models have to be developed in order to predict accurately the
sound transmission through these cylindrical structures.

In these applications, poroelastic materials are commonly used to reduce significantly
the noise transmitted inside the compartment. Many studies have been made to model the
behavior of these porous materials, and literature reveals a large number of publications on this
subject. However, the state of the art shows that there are two main approaches to model them.
The first way is to model them as equivalent fluids [1]. In these models, the viscous and thermal
effects due to the skeleton are considered, but the skeleton elasticity is neglected. The second
way is to use Biot’s model [2, 3]. In the case of Biot’s model, the motion of the skeleton is
taken into account through the elastodynamic equations. This basic model considers the porous
material as a superposition of two coupled solid and fluid phases. It is more adapted to model
the dynamic behavior of poroelastic materials.

In this paper, the sound transmission through a sandwich cylinder having a poroelastic
core modeled with Biot’s theory is studied analytically. The two skins of the sandwich structure
are orthotropic and modeled with a shell model. Thus, a mixed “Biot-Shell” analytical model
is presented in this paper. In section 2, the motion of the sandwich cylinder obtained with
this mixed “Biot-Shell” model is presented. The transfer matrix of the poroelastic core is used
to couple the two skins. In section 3, the model is used to calculate the sound transmission
when the cylinder is excited by an external oblique plane wave. In section 4, numerical results
obtained with the proposed model are presented. As firstly shown, a very good agreement is
found when the results are compared to those obtained with a finite element model. Then, the
Transmission Loss (TL) is studied in different configurations. Finally, the main conclusions are
presented in section 5.

2 VIBRATIONS OF THE SANDWICH CYLINDER

The sandwich structure and the notations used in the following are presented in detail in Fig-
ure 1. Note that layers 1 and 3 refer to the inner and outer skins respectively, and that layer 2
designates the poroelastic core.

2.1 Motion of the orthotropic skins

For each skin i (i = 1, 3) the displacement field is given by the First-order Shear Deformation
Theory (FSDT):

ui(z, θ, ξ) = ui0(z, θ) + ξψiz(z, θ), (1a)

vi(z, θ, ξ) = vi0(z, θ) + ξψiθ(z, θ), (1b)

wi(z, θ, ξ) = wi0(z, θ), (1c)

where ui0, v
i
0 and wi0 are the displacements at ξ = 0 of the layer i in the axial, circumferential

and radial directions, respectively, and ψiz and ψiθ are the rotations of the normal to the median
surface of each layer i. Note that the ξ-axis origin is at the median surface of the cylinder (see
Figure 1).

2
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Figure 1. Sandwich structure and notations.

For each skin, five equilibrium equations are written in terms of displacements as (see
[4, 5] for more details):

Liui + Miüi = qi, (2)

with ui the displacement-rotation vector and qi the force-moment vector given by:

ui =
[
ui0, v

i
0, w

i
0, ψ

i
z, ψ

i
θ

]T and qi =
[
qiz, q

i
θ, q

i
r,m

i
z,m

i
θ

]T
. (3)

Moreover, Li is the stiffness operator and Mi is the mass matrix, which are not given here for
sake of conciseness but can be found in reference [5].

2.2 Transfer matrix of the poroelastic core

Biot’s theory is used to describe the motion of the poroelastic core. The classical Biot’s equa-
tions involve the solid phase (skeleton) displacement field Us and the fluid phase displacement
field Uf [1, 2]. However, it has been shown by Atalla et al. [6] that Biot’s equations can be
rewritten in order to introduce the interstitial pressure p instead of the fluid displacement field
Uf . This mixed (Us, p) formulation has the great advantage of reducing the number of degrees
of freedom per node from 6 to 4 in a finite element implementation. Moreover, according to
Hamdi et al. [7], the mixed formulation presented by Atalla et al. [6] can be reformulated
in order to involve explicitly the total stress tensor in the poroelastic medium. In this way,
the associated weak integral formulation has the great advantage of leading to natural coupling
conditions at the interface between two adjacent layers [7, 8]. The combination between the
method given by Atalla et al. [6] and the formulation proposed by Hamdi et al. [7] leads to the
following mixed Biot’s equations, written in terms of the solid phase displacement field Us and
the interstitial pressure p:

ρ̃ω2Us +∇ · (σ̂s − αφpI) + β∇(φp) = 0, (4)

∇ ·
(

1

ρ̃22ω2
∇(φp)− βUs

)
+
φp

R̃
+ α∇ ·Us = 0, (5)

where φ is the porosity, σ̂s the stress tensor of the skeleton in vacuo, and I the identity matrix.
The terms α = 1 + Q̃

R̃
and β = 1 + ρ̃12

ρ̃22
are two coupling factors between the skeleton and the

interstitial fluid. Moreover, the effective densities ρ̃, ρ̃12, and ρ̃22 and the elastic coefficients Q̃
and R̃ can be found in reference [1]. Note however that the time convention e−jωt is taken here
with an angular frequency ω.

3
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By using the stress-displacement relation σ̂s = λ (∇ ·Us) I+µ
(
∇Us + (∇Us)T

)
, the

first mixed Biot’s equation (4) becomes:

ρ̃ω2Us + (λ+ 2µ)∇(∇ ·Us)− γ̃∇(φp)− µ∇∧∇ ∧Us = 0, (6)

where λ and µ are the Lamé coefficient of the skeleton in vacuo and γ̃ = α − β. To solve this
equation, the following Helmholtz decomposition is used for the solid displacement:

Us = ∇ (ϕs1 + ϕs2) +∇∧ψs, (7)

whereϕs1 andϕs2 are the scalar potentials related to the two longitudinal waves, andψs the vector
potential related to the shear wave in the poroelastic medium. Substituting the decomposition
(7) into Biot’s equations (6) and (5) gives, all calculations done, three wave equations fulfilled
by each of the potentials:

∆ϕs1 +
ω2

c21
ϕs1 = 0, ∆ϕs2 +

ω2

c22
ϕs2 = 0 and ∆ψs +

ω2

c23
ψs = 0, (8)

where ∆ is the Laplacian operator, c1 and c2 the celerity of the two longitudinal waves and c3
the celerity of the shear wave. The details of c1, c2 and c3 can be found in reference [1]. The
substitution of (7) into (6) also gives a relation between the interstitial pressure and the scalar
potentials:

p =
1

γ̃φ

(
(λ+ 2µ)∆ (ϕs1 + ϕs2) + ρ̃ω2 (ϕs1 + ϕs2)

)
. (9)

The general solutions of the wave equations given in (8) are expanded in cylindrical
harmonics. By substituting these solutions into equation (7), the following solid displacement
field is obtained:

U s
r (r, θ, z, t) =

∞∑
n=0

U s,n
r (r) cos(nθ)ejkzz−jωt, (10a)

U s
θ (r, θ, z, t) =

∞∑
n=0

U s,n
θ (r) sin(nθ)ejkzz−jωt, (10b)

U s
z (r, θ, z, t) =

∞∑
n=0

jU s,n
z (r) cos(nθ)ejkzz−jωt, (10c)

where n designates the circumferential order and kz the axial wavenumber. Moreover, U s
r , U s

θ

andU s
z are the radial, circumferential and axial components respectively. The fluid displacement

Uf is also related to the scalar and vector potentials with

Uf = ∇ (µ1ϕ
s
1 + µ2ϕ

s
2) +∇∧ µ3ψ

s, (11)

where the amplitude ratios µ1, µ2 and µ3 can be found in reference [1]. The radial component
is thus also expanded in cylindrical harmonics as follows:

U f
r (r, θ, z, t) =

∞∑
n=0

U f,n
r (r) cos(nθ)ejkzz−jωt. (12)

The stress components are also needed to characterize the poroelastic medium. The total
stress tensor in the poroelastic medium σt is the sum of a tensor related to the solid phase σ̂s

and a tensor related to the fluid phase σ̂f :

σt = σ̂s + σ̂f , (13)

4

29/361



DYNCOMP’2015 2-4 June 2015, Arles (France)

where the notation σ̂f = −αφpI has been introduced. The solid phase stress tensor is obtained
by using the stress-displacement relation. This yields:

σ̂srr(r, θ, z, t) =
∞∑
n=0

σ̂s,nrr (r) cos(nθ)ejkzz−jωt, (14a)

σ̂srθ(r, θ, z, t) =
∞∑
n=0

σ̂s,nrθ (r) sin(nθ)ejkzz−jωt, (14b)

σ̂srz(r, θ, z, t) =
∞∑
n=0

jσ̂s,nrz (r) cos(nθ)ejkzz−jωt. (14c)

The tensor σ̂f is obtained by using the expression of p given in equation (9). The scalar poten-
tials ϕs1 and ϕs2 being defined in cylindrical coordinates, this tensor is also expanded in cylindri-
cal harmonics. This yields for σ̂frr:

σ̂frr(r, θ, z, t) =
∞∑
n=0

σ̂f,nrr (r) cos(nθ)ejkzz−jωt. (15)

The modal transfer matrix method is now used to relate the displacements and stresses
at each interface of the poroelastic core. The modal amplitudes at the interfaces r = r1+ and
r = r3− of the core are hence related with:

Ŝ(r1+) = T̂Ŝ(r3−), (16)

where Ŝ(r) =
[
U s,n
z (r), U s,n

θ (r), U s,n
r (r), U f,n

r (r), σ̂s,nrz (r), σ̂s,nrθ (r), σ̂s,nrr (r), σ̂f,nrr (r)
]T is the modal

amplitude vector, and T̂ is the 8×8 modal transfer matrix. Equation (16) can be rewritten in or-
der to express the stresses components in terms of the displacements components. This yields:

σ̂1−3
n = k̂ Û1−3

n , (17)

with

σ̂1−3
n =

[
σ̂s,nrz (r1+), σ̂s,nrθ (r1+), σ̂s,nrr (r1+), σ̂f,nrr (r1+),−σ̂s,nrz (r3−),−σ̂s,nrθ (r3−),−σ̂s,nrr (r3−),−σ̂f,nrr (r3−)

]T
,

(18)
and

Û1−3
n =

[
U s,n
z (r1+), U s,n

θ (r1+), U s,n
r (r1+), U f,n

r (r1+), U s,n
z (r3−), U s,n

θ (r3−), U s,n
r (r3−), U f,n

r (r3−)
]T
.

(19)
The matrix k̂ is homogeneous to a stiffness matrix and is build from the components of the
modal transfer matrix T̂.

2.3 Coupling conditions

(i) The continuity of the displacements must be satisfied at the core-skin interfaces. At r = r1+
(interface between layers 1 and 2) this condition writes:

U s
z (r1+, θ, z) = u1(z, θ, h1+) = u10(z, θ) + h1+ψ

1
z(z, θ), (20a)

U s
θ (r1+, θ, z) = v1(z, θ, h1+) = v10(z, θ) + h1+ψ

1
θ(z, θ), (20b)

U s
r (r1+, θ, z) = w1(z, θ, h1+) = w1

0(z, θ), (20c)

U f
r (r1+, θ, z) = w1(z, θ, h1+) = w1

0(z, θ), (20d)

5
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while at r = r3− (interface between layers 2 and 3) it writes:

U s
z (r3−, θ, z) = u3(z, θ, h3−) = u30(z, θ) + h3−ψ

3
z(z, θ), (21a)

U s
θ (r3−, θ, z) = v3(z, θ, h3−) = v30(z, θ) + h3−ψ

3
θ(z, θ), (21b)

U s
r (r3−, θ, z) = w3(z, θ, h3−) = w3

0(z, θ), (21c)

U f
r (r3−, θ, z) = w3(z, θ, h3−) = w3

0(z, θ). (21d)

(ii) Instead of using the stress continuity explicitly, the forces qi appearing in the right-
hand side of the skins equations (2) will be split as the sum of the generalized reaction forces
q̂icore applied by the poroelastic core on the skin i, and of the external forces qiext:

Liui + Miüi = q̂icore + qiext. (22)

The generalized core reaction forces given here are obtained by using the stress components of
the poroelastic core in Eqs. (14) and (15) such as:

q̂1
core =


σ̂srz(r1+, θ, z, t)
σ̂srθ(r1+, θ, z, t)

σ̂srr(r1+, θ, z, t) + σ̂frr(r1+, θ, z, t)
h1+σ̂

s
rz(r1+, θ, z, t)

h1+σ̂
s
rθ(r1+, θ, z, t)

 and q̂3
core = −


σ̂srz(r3−, θ, z, t)
σ̂srθ(r3−, θ, z, t)

σ̂srr(r3−, θ, z, t) + σ̂frr(r3−, θ, z, t)
h3−σ̂

s
rz(r3−, θ, z, t)

h3−σ̂
s
rθ(r3−, θ, z, t)

 .
(23)

and while the external forces qiext write:

qiext =
[
f iz,ext, f

i
θ,ext, f

i
r,ext,m

i
z,ext,m

i
θ,ext

]T
, (24)

with f iz,ext, f
i
θ,ext and f ir,ext the external forces per unit area, and mi

z,ext and mi
θ,ext the external

moments per unit area.

2.4 Global dynamic equilibrium

The two equations of motion of the skins are firstly grouped into a single system:[
L1 0
0 L3

] [
u1

u3

]
+

[
M1 0
0 M3

] [
ü1

ü3

]
=

[
q̂1
core

q̂3
core

]
+

[
q1
ext

q3
ext

]
, (25)

and, as in section 2.2 for the core displacement, the skins displacements and the external forces
are expanded in cylindrical harmonics:
ui0
vi0
wi0
ψiz
ψiθ

 =
∞∑
n=0


jui0n cos(nθ)
vi0n sin(nθ)
wi0n cos(nθ)
jψizn cos(nθ)
ψiθn sin(nθ)

 ejkzz−jωt and


f iz,ext
f iθ,ext
f ir,ext
mi
z,ext

mi
θ,ext

 =
∞∑
n=0


jf izn,ext cos(nθ)
f iθn,ext sin(nθ)
f irn,ext cos(nθ)

jmi
zn,ext cos(nθ)

mi
θn,ext sin(nθ)

 ejkzz−jωt.

(26)
Using the expressions of the skins displacements and of the external forces given in equa-
tion (26), equation of motion (25) can be rewritten for each circumferential mode n as follows:[

K1 0
0 K3

] [
u1
n

u3
n

]
− ω2

[
M1 0
0 M3

] [
u1
n

u3
n

]
=

[
q̂1
n,core

q̂3
n,core

]
+

[
q1
n,ext

q3
n,ext

]
, (27)

6
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where uin is the displacement-rotation amplitude vector:

uin =
[
ui0n, v

i
0n, w

i
0n, ψ

i
zn, ψ

i
θn

]T
, (28)

q̂in,core is the generalized reaction amplitude vector:

q̂1
n,core =


σ̂s,nrz (r1+)
σ̂s,nrθ (r1+)

σ̂s,nrr (r1+) + σ̂f,nrr (r1+)
h1+σ̂

s,n
rz (r1+)

h1+σ̂
s,n
rθ (r1+)

 and q̂3
n,core = −


σ̂s,nrz (r3−)
σ̂s,nrθ (r3−)

σ̂s,nrr (r3−) + σ̂f,nrr (r3−)
h3−σ̂

s,n
rz (r3−)

h3−σ̂
s,n
rθ (r3−)

 , (29)

qin,ext is the external force amplitude vector:

qin,ext =
[
f izn,ext, f

i
θn,ext, f

i
rn,ext,m

i
zn,ext,m

i
θn,ext

]T
, (30)

and Ki is the stiffness matrix given in reference [5].
The generalized reaction amplitude vectors q̂1

n,core and q̂3
n,core appearing in the right-

hand side of Eq. (27) can be written in terms of the skins displacements, using equations (17),
(20) and (21). The resulting generalized reaction amplitude vectors write hence:[

q̂1
n,core

q̂3
n,core

]
=

[
K̂2

11 K̂2
13

K̂2
31 K̂2

33

] [
u1
n

u3
n

]
, (31)

and after substitution of this equation in (27), we finally obtain:[
K1 − K̂2

11 −K̂2
13

−K̂2
31 K3 − K̂2

33

] [
u1
n

u3
n

]
− ω2

[
M1 0
0 M3

] [
u1
n

u3
n

]
=

[
q1
n,ext

q3
n,ext

]
. (32)

Equation (32) describes the motion of the entire structure excited by external forces. This
equation clearly shows the coupling between the inner and the outer skin with the impedance
matrix of the poroelastic core K̂2(ω).

3 VIBROACOUSTIC PROBLEM

3.1 Global vibroacoustic system

In this paper, the cylinder is excited by an external oblique plane wave. For this kind of excita-
tion, the external forces acting on the structure are the following:

q1
ext = [0, 0, p2(r1−, θ, z, t), 0, 0]T and q3

ext = [0, 0,−p1(r3+, θ, z, t), 0, 0]T , (33)

where p1 and p2 are the acoustic pressures in the external medium and in the cavity respectively.
In reference [5] it is shown that for this kind of excitation, the external force amplitude vectors
qin,ext can be written in terms of the skins displacement amplitude vectors uin in the following
form: [

q1
n,ext

q3
n,ext

]
=

[
Z1 0
0 Z3

] [
u1
n

u3
n

]
+

[
0
pbn

]
, (34)

where pbn is the blocked-wall vector expressed in terms of the blocked-wall pressure pb. More-
over, Z1 and Z3 are impedance matrices expressed in terms of Z1n and Z2n, the radiation
impedance of the external and internal surfaces of the cylinder respectively. The expressions of
pbn, Z1 and Z3 are given in reference [5]. Finally, the global vibroacoustic system is obtained
by substituting (34) into (32):[

K1 − K̂2
11 − Z1 −K̂2

13

−K̂2
31 K3 − K̂2

33 − Z3

] [
u1
n

u3
n

]
− ω2

[
M1 0
0 M3

] [
u1
n

u3
n

]
=

[
0
pbn

]
. (35)

7
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Figure 2: Comparison of the mean-square pressure obtained with the present mixed “Biot-
Shell” analytical model and with a finite element model for a sandwich cylinder excited by a
plane wave (γ = 0◦). ( ) Mixed “Biot-Shell” analytical model, (+) finite element model.

3.2 Transmission Loss calculation

The Transmission Loss (TL) is used to characterize the sound transmission. The TL is defined
by:

TL = 10 log
W I

W T
, (36)

where W I and W T are the incident and transmitted powers, respectively. All calculations done,
the TL is found in the following form (see reference [5] for more details):

TL = −10 log
∞∑
n=0

Re {Z2nw
1
0n · (−jωw1

0n)∗} r1−ρ1c01π
r3+p20εn cos γ

, (37)

where γ is the incidence angle with respect to the normal of the cylinder. Moreover, p0 is the
amplitude of the incident wave, εn is the Neumann factor (εn = 1 if n = 0, εn = 2 if n 6= 0),
ρ1 and c01 are the density and the speed of sound in the external fluid, and Re{.} and ∗ are the
real part and the complex conjugate, respectively. The displacement amplitude w1

0n is obtained
by solving the global vibroacoustic system (35) for each circumferential mode n.

4 RESULTS

4.1 Analytical model validation

In this section, the mixed “Biot-Shell” analytical model is validated with a finite element model.
The problem studied here is the acoustic transmission through an infinite cylinder. To simulate
the axially infinite extent, a 2-dimensional finite element model in the (r-θ) plane is used, and
the external plane wave is applied at normal incidence with respect to the cylinder axis (γ = 0◦).
The model is meshed with linear triangular elements, and an absorbent Perfectly Matched Layer
(PML) is also used to impose a non-reflection boundary condition. Note that a resonant cavity is
considered in the finite element model. This condition is therefore also applied in the analytical
model. Finally, the mean-square pressure 〈p2int〉 in the internal cylindrical cavity is used herein
to compare the two methods.

Figure 2 presents the mean-square pressure obtained with the two methods, in the case
of a sandwich cylinder having aluminum skins of 5 mm and a foam core of 20 mm, whose
properties are given in reference [9]. A very good agreement is obtained between the mixed

8
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Figure 3: Effect of the poroelastic material on the TL of a cylinder excited by a plane wave
(γ = 45◦). ( ) Single shell, ( ) shell + poroelastic coating (two-layer configuration).

“Biot-Shell” analytical model and the finite element model. Other configurations have also
been tested and have given similar results. The analytical model is hence validated. Note also
that the computation time of the analytical model is very low compared to the finite element
model.

4.2 Poroelastic material effects

The mixed “Biot-Shell” analytical model is now used to study the influence of the poroelastic
material on sound transmission. To do this, two configurations are studied. The first one is the
single shell configuration, where a single orthotropic shell is considered. The second one is
the two-layer configuration, where a poroelastic coating is added to the shell used in the first
configuration. The orthotropic shell being the same in both cases, this allows us to directly
study the influence of the poroelastic material on sound transmission. Note that the calculation
is made for an aerospace configuration (r3+ = 2.164 m, shell thickness of 2 mm and poroelastic
thickness of 50 mm). The results are presented in Figure 3.

In view of this figure, the ring frequency fr separates two domains. Below the ring
frequency, in very low frequencies (f < 60 Hz), adding a poroelastic material does not reduce
sound transmission and the TL is not improved. Indeed, for f < fr, the structure vibrates with
a global behavior and sound transmission is primarily governed by the rigid shell. Nevertheless,
the poroelastic layer shifts the frequencies of the structural resonances. However, it is found that
around the ring frequency, adding a poroelastic layer improves the TL. Indeed, a gain from 1 to
2 dB is observed in this frequency zone. This interesting result is explained by the fact that the
poroelastic layer adds damping to the structure, which is mainly due to the thermal and viscous
dissipation. Since the TL is dependent of the damping at the ring frequency, this explains why
the results are improved with the poroelastic layer.

Observing now the results above the ring frequency, we see that the TL is significantly
improved with the poroelastic material. Three factors can explain this phenomenon. First, the
poroelastic material adds weight to the structure. This allows the TL to be increased, mainly in
the mass-controlled zone (between 175 Hz and 6000 Hz). Then, the poroelastic material adds
damping to the structure. Thus, it reduces the TL at its dips (between 6000 Hz and 7500 Hz
in particular). Last but not least, the poroelastic material has a high power of absorption of
acoustic waves, and its efficiency is greater when the frequency increases. This explains the
improving of the TL in the mid- and high frequencies with the poroelastic coating.

9
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Finally, since the mass of the poroelastic layer is low, adding this type of material is a
very interesting solution to reduce the sound transmission through cylindrical structures.

5 CONCLUSION

In this paper, a mixed “Biot-Shell” analytical model has been presented. Its main advantage is
to allow fast analytical calculations of sound transmission through orthotropic shells having a
poroelastic coating, taking into account the elasticity effects of the poroelastic material.

Two important effects of the poroelastic layer were highlighted from the results obtained
with the proposed model. The first one is to reduce significantly the sound transmission above
the ring frequency, and the second one is to reduce the transmission around the ring frequency.
The mass added by a poroelastic material being quite low, this is a very interesting solution to
reduce sound transmission through a cylindrical structure.

In conclusion, the mixed “Biot-Shell” analytical model proposed in this paper is very
well adapted to describe the behavior of an orthotropic cylinder having a poroelastic coating,
since all the physical phenomena are taken into account in the poroelastic layer with Biot’s
model.
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ABSTRACT

The aim of this work is to demonstrate how the wave and finite element (WFE) method can be
used for the prediction of the scattering of waves in joined flat panels that are homogeneous
in two directions but that could be arbitrarily complicated through the thickness. The WFE
method is based on analysing the FE model of, typically, a rectangular segment of the plate
through its thickness. This FE model can be obtained using standard FE libraries and com-
mercial or in-house packages can be equally exploited with the only restriction being that the
nodes and the corresponding degrees of freedom are identically arranged at each edge. The FE
model of the segment is post-processed using periodic structure theory to formulate an eigen-
problem whose solution includes complete information of the wave characteristics of the plate.
For joined panels, the wave behaviour of each panel is obtained using the WFE method and
the joint is modelled using standard FE with a matching number of nodes at the interface with
each panel. Then, continuity and equilibrium conditions are enforced at the interfaces. Cou-
pling the WFE and FE models can be utilised to deduce the scattering of waves through the
joint. Furthermore, the flow of power can be investigated at different frequencies and in various
incidence directions.
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1 INTRODUCTION

The prediction of disturbance transmission, energy transport and acoustic radiation from com-
posite structures is of great importance for many applications. Composite plates are generally
used for buildings, bridges, vehicles and many other structures. A typical composite plate can
comprise many layers of different properties and orientations. Details about the mechanics of
laminated composite plates can be found in [1]. Developing analytical models that describe the
dynamic behaviour of such plates can be a very difficult task. Although layer-wise theories can
be used, the resulting governing equations can be cumbersome and the dispersion equations can
be of very high order or transcendental. As an alternative, numerical techniques such as the
finite element (FE) method are often used; however, FE models become impractically large at
high frequencies.

In recent years, the wave and finite element (WFE) method has been proposed and de-
veloped to model the wave behaviour of complicated media that is homogeneous in one or two
directions. One of the early works on this method can be found in [4]. This method has also
been further applied to study thin plates [5, 6], laminated plates [7], fluid-filled pipes [8, 9],
cylindrical structures [10, 11] and to predict the free [7] and forced [12] response.

For simple cases, the scattering properties of joints can be obtained by analytical solu-
tions, see [2, 3]. Whereas, in case of more complicated structures, such as plate/beam junctions
[13], bolted joints [14] and curved beams [15], wave approaches can been used to find the re-
flection and transmission coefficients. The hybrid FE/WFE approach for the computation of the
scattering properties of joints in structures comprised of waveguides is introduced in [16].

The aim of this paper is to calculate the scattering properties of the joint in case of two-
dimensional structures by using the hybrid FE/WFE method. In section 2 the WFE method
in plates is presented. The scattering properties of waves in plates is discussed in section 3.
Section 4 includes some numerical results about the dispersion curves and the power flow at
different frequencies and incidence directions. Conclusions are drawn in section 5.

2 WFE METHOD IN TWO-DIMENSIONAL STRUCTURES

In this section, the WFE method for two-dimensional structures is briefly reviewed [5]. Time-
harmonic motion of the form exp[ı(ωt − kxx − kyy)] is assumed where kx = k cos θ and
ky = k sin θ are the components of the wavenumber k in the x and y directions, i.e., the wave
is travelling in the θ direction. The wavenumbers might be: real for propagating waves in the
absence of damping, pure imaginary for evanescent waves or complex for oscillating, decaying
waves. Consider a solid which is homogeneous in both the x and y directions, but whose

!!!WFE!

x

y!

z!

Figure 1: Segment for the WFE modelling of
the plate.
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Figure 2: Rectangular segment.
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properties may vary arbitrarily through its thickness in the z-direction, see Figure 1. The WFE
method starts with a FE model of a small rectangular segment in the (x,y) plane of the plate with
sides of lengths Lx and Ly as in Figure 2. This segment is meshed through the thickness using
any number of elements: the only condition is that the nodes and degrees of freedom (dofs) are
identically arranged on the opposite sides of the segment. Consequently, in case of laminated
panels any number of layers and any stacking sequence can be considered.

The vector of dofs q is partitioned as

q = [qT
lb qT

rb qT
lt qT

rt qT
b qT

r qT
t qT

l qT
i ]T .

The vector of nodal forces f is partitioned in a similar manner. For time harmonic motion at
frequency ω and in absence of external forces, the governing equation of the segment is Dq = f,
where D = (K + ıωC−ω2M) is the stiffness matrix and K, C, and M are the stiffness, viscous
damping and mass matrices, respectively. Under the free passage of a wave whose component
in the y direction is ky, a transformation matrix R relates the full vector of dofs to a reduced set
of dofs as

q = Rqred , where qred =



qlb

ql

qrb

qr

qb

qi


=

qL

qR

qO

 .

The transformation matrix R depends on the propagation constant λy = exp(−ıkyLy) and is
given as

R ∼= R(λy) =



I 0 0 0 0 0
0 0 I 0 0 0
λyI 0 0 0 0 0
0 0 λyI 0 0 0
0 0 0 0 I 0
0 0 0 I 0 0
0 0 0 0 λyI 0
0 I 0 0 0 0
0 0 0 0 0 I


.

Hence, the governing equation can be written in terms of the reduced dofs as

RH(K + ıωC− ω2M)Rqred = fred , (1)

where H is the Hermitian matrix operator and

fred := RHf =



flb + λ−1y flt
fl

frb + λ−1y frt
fr

fb + λ−1y ft
fi


=

fL
fR
fO

 .

Since the internal nodal forces are zero, fi = 0, and due to the equilibrium conditions at the
bottom edge of the segment fb + λ−1y ft = 0 then fO = 0. Thus, Equation 1 can be expressed as
D̃qred = fred, where D̃ = RH [K + ıωC− ω2M]R; this can be rearranged intoD̃LL D̃LR D̃LO

D̃RL D̃RR D̃RO

D̃OL D̃OR D̃OO

qL

qR

qO

 =

fL
fR
0

 . (2)

3

38/361



DYNCOMP’2015 2-4 June 2015, Arles (France)

The dofs in qO can be eliminated, and the following form is obtained[
DLL DLR

DRL DRR

]{
qL

qR

}
=

{
fL
fR

}
. (3)

This formulation of the governing equation corresponds to the one-dimensional formulation
of the WFE method introduced in [7]. The propagation constant in the x-direction λx =
exp(−ıkxLx) can be found by stating the periodicity and equilibrium conditions between the
left and right edges of the segment

qR = λxqL and λxfL + fR = 0 (4)

and by formulating the eigenvalue problem

T
{

qL

fL

}
= λx

{
qL

fL

}
, where T =

[
−D−1LRDLL D−1LR

−DRL + DRRD−1LRDLL −DRRD−1LR

]
(5)

is the transfer matrix. A number of better-conditioned eigenproblems can be formulated [17].
Regardless of the eigenproblem used, its solution yield the WFE estimate of the wavenumber
kx and the wavemode shapes, which form the wave basis. The eigenvalues and the associated
eigenvectors of the transfer matrix occur in pairs (λ+x ,φ

+) and (λ−x ,φ
−), which represent a

pair of positive-and negative-going waves [17, 18]. From the computed waves, by applying the
criterion |kxLx| < 1, only the propagating waves and the slowly decaying waves are retained at
each frequency. Reducing the wave basis will: (a) reduce the size of the model and (b) improve
the conditioning of the system [19].

With the positive- and negative-going waves identified and the eigenvectors partitioned
to demonstrate the influence of the nodal dofs and forces the vectors q and f can be written in
terms of the wave amplitudes a±, i.e.,

q = Φ+
q a+ + Φ−q a− , f = Φ+

f a+ + Φ−f a− . (6)

These matrices define a transformation between the physical domain, where the motion is de-
scribed in terms of q and f, and the wave domain, where the motion is described in terms of
waves of amplitudes a± that travel in the positive and negative x-directions, respectively.

The knowledge of the wavemodes can be further used to find the time-averaged power
of the waves as

Π =
1

2
aHPa ,

where a = [(a+)T (a−)T ]T and P is the power matrix that can be expressed as

P =
iω

2

{[
(Φ+

q )HΦ+
f (Φ+

q )HΦ−f
(Φ−q )HΦ+

f (Φ−q )HΦ−f

]
−
[
(Φ+

f )HΦ+
q (Φ+

f )HΦ−q
(Φ−f )HΦ+

q (Φ−f )HΦ−q

]}
. (7)

The power matrix is Hermitian and thus the time averaged power Π is always real.

3 REFLECTION AND TRANSMISSION COEFFICIENTS OF JOINTS

Structures can include discontinuities such as boundaries, line junctions or joints of finite di-
mensions, whose scattering properties are of a great importance for the structural vibration
analysis.

Consider a straight line junction between two plates, see Figure 3. Waves in “Plate 1”
of amplitudes a+ are incident on the joint and they give rise to reflected waves of amplitudes

4
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Figure 3: Reflection and transmission on a joint.
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Figure 4: Simply supported plate.

a− = r11a+ and transmitted waves in “Plate 2” of amplitudes b+ = t12a−, where r11 and
t12 are the matrices of the reflection and transmission coefficients of the joint. These define
the scattering matrix s of the joint, whose partitions relate the amplitudes of the incident and
scattered waves.

Denoting by j the wavemodes and by aj the wave amplitude, from Equation 7, the power
flow of the j-th wave is given by Pjj|aj|2. For an incoming wave denoted by j and by using the
indices i and k for reflected and transmitted waves, respectively, the reflection and transmission
coefficients are computed by

R = [Rij] =

[
|rij|2

Pii

Pjj

]
and T = [Tkj] =

[
|tkj|2

Pkk

Pjj

]
. (8)

For lossless systems the reflection and transmission coefficients should sum to unity.

3.1 Reflection at a boundary

Consider an isotropic plate which lies in the region x ≤ 0 with an edge along the line x = 0
as shown in Figure 4. Waves with amplitude a− are incident upon the boundary and generate
only reflected waves. Any boundary condition in terms of the nodal dofs and nodal forces can
be written as Af + Bq = 0. The dofs and the internal forces can be further projected onto the
wave domain using Equation 6, yielding

A(Φ+
f a+ + Φ−f a−) + B(Φ+

q a+ + Φ−q a−) = 0 . (9)

The incident and reflected waves are related by the reflection matrix which follows as

r = −
[
AΦ+

f + BΦ+
q
]−1 [AΦ−f + BΦ−q

]
. (10)

3.2 FE/WFE method for a joint of finite dimensions

Analytical results for the scattering coefficients exist for few simple cases, e.g. the reflection
coefficients of waves in a simply supported or fixed edge of an isotropic plate. For more compli-
cated structures and joints of finite dimension the hybrid FE/WFE approach is proposed. Details
about the FE/WFE approach in case of joined waveguides can be found in [6, 16].
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Plate 1

Joint Plate 2

x

y

z

Figure 5: Schematic of two bonded plates. The overlapping region of the two plates is consid-
ered the joint.

Consider two plates and a joint as they are illustrated in Figure 5. The FE/WFE approach
relies on modelling the plates by using the WFE method, as it was described in section 2, and
on modelling the joint by using standard FE methods. A segment of the joint is modelled using
standard FE; the stiffness and mass matrices K and M of a segment of the joint are used to
formulate the dynamic stiffness matrix of the joint D = K − ω2M. In principle, the scattering
properties of a joint can be found by applying equations of equilibrium and continuity at the
interface nodes between the joints and the plates. For this aim, it is assumed that the interfaces
have compatible meshes. The time harmonic behaviour of the joint is described through

D
{

Qi

Qn

}
≡

[
D̃ii D̃in

D̃ni D̃nn

]{
Qi

Qn

}
=

{
Fi

Fn

}
, (11)

where Q and F are vectors of dofs and of internal nodal forces. Since no external forces are
applied at the non-interface nodes, i.e., Fn = 0, then Equation 11 reduces to

DiiQi = Fi where Dii = D̃ii − D̃inD̃
−1
nnD̃ni, and Qn = −D̃

−1
nnD̃niQi . (12)

By applying the periodicity conditions, the nodal dofs and forces at the interface are expressed
in terms of the dofs and forces of the plate. Equation 12 can be expressed in the wave domain
and the scattering matrix, which relates the incoming and outgoing waves with a− = sa+, is
finally given by

s = −
[
DiiΦ

−
q −Φ−f

]−1 [−Φ+
f + DiiΦ

+
q
]
. (13)

4 NUMERICAL RESULTS

In this section, numerical examples are presented to demonstrate the developed method. The
first example is of a plate with a simply supported edge. The next one is about two bonded plates
with the same properties and the last one is of two joined laminated plates. In the following, all
properties and dimensions are in SI units.

4.1 Isotropic plate with simply supported edge

For the first example a plate in the (x-y) plane with simply supported edge and three dofs has
been chosen, see Figure 4. The plate has thickness h = 3× 10−3 and material properties given
by the values ρ = 2700, E = 0.71 × 1011 and ν = 0.28. The boundary conditions are: the
displacement in the z direction is zero and the bending moment along the x axis is zero. The
wavenumbers are analytically known [2, 3] and the numerical computations can validate the
WFE model, Figure 6a.

6
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Figure 6: Isotropic plate with simply supported edge.

Due to the boundary there exist only reflected power and the analytic value of the reflec-
tion ratio is equal to one. Computing the reflection matrix in terms of the wavemodes by using
Equation 10 the reflection ratio with respect to the angle of incidence is shown in Figure 6b.

4.2 Identical bonded plates

The structure in the second example comprises of two joined identical isotropic plates with the
same material properties as in the example of subsection 4.1 and a joint as shown in Figure
5. The hybrid FE/WFE model as described in subsection 3.2 allows the computation of the
reflection and transmission coefficients of the joint. For motion along the x-axis, i.e., θ = 0◦ and
for different frequencies, the power ratio between two bending-type waves is equally distributed
between reflection and transmission as shown in Figure 7a.
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(b) Power reflection and transmission coefficients be-
tween two bending-type waves at 1 kHz.

Figure 7: Power reflection and transmission coefficients between two bending-type waves in
case of identical bonded isotropic plates.

One can also investigate the influence of the angle of incidence, θ, on the reflection
and transmission. Figure 7b shows the power reflection and transmission coefficients for
bending-to-bending reflection and transmission at 1 kHz with respect to the incidence angle
range (−90◦, 90◦). For propagation angle θ = 0◦ the reflection and transmission ratios are
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equal (≈ 0.5). While the propagation angle is increasing, the reflection ratio is increasing too.
At an incidence angle θ ≈ 90◦, which corresponds to wave propagation in the y-direction, the
reflection ratio is equal to one and the transmission ratio is zero.

4.3 Bonded plates made of composite materials

The plates in the third example are two laminated plates that have the same thickness and
properties, and are attached to each other by an adhesive with properties E = 2.95 × 109,
ρ = 1100 and ν = 0.286. Each plate comprises a light, soft foam core sandwiched between two
skins. Each skin is made of four layers of graphite epoxy whose material properties along the
axes x′, y′ and z′ of orthotropy are Ex′ = 144.48× 109 and Ey′ = Ez′ = 9.63× 109; the shear
moduli are Gx′y′ = Gx′z′ = Gy′z′ = 4.128 × 109; Poisson’s ratios are νx′y′ = νz′y′ = 0.02 and
νx′z′ = 0.3; the density is ρ = 1389 and the material loss factor is η = 0.01.

The layup of the inner (i.e., bottom) skin is [0/90/90/0] degrees and that of the outer
(i.e., top) skin is [90/0/0/90] degrees, and each skin is 4 × 10−3 thick (with each laminate
being 1mm thick). The core is a polymethacrylamide ROHACELL foam which is isotropic
with modulus of elasticity E = 0.18 × 109, density ρ = 1100 and Poisson’s ratio ν = 0.286.
For the WFE modelling, SOLID45 elements of ANSYS were meshed through the thickness of
each plate.

In Figure 8a the numerically competed values of the wavenumbers of all retained waves
are plotted. In this figure one can distinguish the wavenumbers which correspond to the standard
waves (i.e., axial, shear and bending). These are also separately shown in Figure 8b. Moreover,
there can also be observed and more complicated waves. These are expected to cut-on (i.e.
become propagating waves) at higher frequencies as Figure 8a shows. Since there are no
known analytical values for these wavenumbers, WFE method is a valuable tool to evaluate the
wave characteristics of the plates.
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Figure 8: Dispersion curves for the laminated plate in case of propagation angle θ = 0.

Concerning the reflection and transmission coefficients between two bending type waves
one can see from Figure 9a that for propagation along the x-axis and lower frequencies, the
transmission ratio is higher than the reflection ratio. On the other hand, for higher frequencies
there is almost no transmitted power. At low frequencies, the sandwiched behave similar to
orthotropic plates with a “near” equi-partition between reflected and transmitted power. As the
frequency increases, the role of the joint becomes more apparent and it acts as an impedence
which causes the bending waves to reflect into the “source” plate. The discontinuities that are
observed above 4.5 kHz can be attributed to wavemode conversions where the waves cannot be
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purely classified. Similar results are observed for the power ratios at 1kHz for a varying angle
of incidence, see Figure 9b. In particular, the transmitted power is decreasing while the angle
of propagation is getting bigger and for an angle θ > 45◦ there are only reflected waves.
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Figure 9: Power reflection and transmission coefficients between two bending-type waves in
case of bonded laminates.

5 CONCLUSION

In this paper the WFE method for two dimensional structures has been implemented not only
for isotropic plates but also for laminates. The scattering matrix of the joints, when joined plates
are considered has also been computed by means of the hybrid FE/WFE approach. Combining
the wave characteristics of the plates with the scattering properties of joint, the power reflection
and transmission ratios are estimated. The findings of this paper provide valuable knowledge
regarding the propagation of waves in the structures under consideration, especially for the
cases where analytical results are not known or too difficult to be found.
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ABSTRACT

In this paper, the propagation of high-order waves in a sandwich plate made of transverse
isotropic honeycomb core surrounded by fiber-reinforced skins is investigated. These waves
are created under pulse train excitation. The wave scattering effects are studied using time-
response analysis in the composite waveguide and compared to the WFEM predictions. Fur-
thermore, these high-order waves have low spatial attenuation in broadband frequency range
and can be used as an alternative to several SHM techniques based on first-order wave prop-
agation. It may ultimately encompass some of the drawbacks encountered when dealing with
boundary conditions in 2D-waveguides or provide accurate wave-based inspection techniques
for heterogeneous or composite beams.
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1 INTRODUCTION

For the last decades, numerical and experimental methods were extensively investigated to pro-
vide efficient and accurate Structural Health Monitoring (SHM) and Non Destructive Evalua-
tion (NDE) techniques for automotive and aerospace industry [1]. Most of the aforementioned
methods consist in evaluating the dispersion characteristics of a reduced number of propagat-
ing (or guided) waves in a given structure since they can propagate long distances with weak
spatial attenuation. In this context, numerous numerical methods were developed in order to
predict the wave dispersion characteristics in composite waveguides. Waveguides are struc-
tures, such as beams, pipes, sandwich panels or layered shells, whose dimensions lead to a set
of privileged directions for the propagation of the mechanical energy. The Wave Finite Element
Method (WFEM) uses Bloch’s theorem [2] to provide significant reduction of the modelling
effort for such analyses, since it combines the Periodic Structures Theory (PST) with commer-
cial finite element packages [3, 4]. Therefore, wave dispersion characteristics of a waveguide
whose cross-section is modelled with FEM can be derived by solving a small quadratic eigen-
value problem [5].

Although wave-based methods are extensively employed in the offshore and aerospace
industries for inspecting defects and cracks in 1D and 2D waveguides, these approaches are of-
ten involving first-order waves, such as the flexural, or Lamb waves for beams, plates, laminated
or sandwich panels, and torsional waves in pipelines inspection. However, when composite or
large-scaled 1D waveguides are considered, first-order waves can be prone to coupling effects,
or unaffected by localized defects. In this case higher-order, or localized waves may be used
instead. Therefore, the specific dispersion characteristics of these waves have to be taken into
consideration. In this paper, the propagation of high-order plane waves in a sandwich plate
made of transverse isotropic honeycomb core surrounded by fiber-reinforced skins is investi-
gated. These waves are created under pulse sinusoidal excitation. The wave scattering effects
are studied using time-response analysis in the composite plate and compared to the WFEM
predictions. Furthermore, these high-order waves have low spatial attenuation in broadband
frequency range and can be used as an alternative to several SHM techniques based on first-
order wave propagation. It may ultimately encompass some of the drawbacks encountered when
dealing with boundary conditions in 2D-waveguides or provide accurate wave-based inspection
techniques for heterogeneous or composite beams.

2 WAVE FINITE ELEMENT METHOD (WFEM)

A waveguide is considered as a straight elastic structure made of N of identical substructures
of same length d, connected along the direction x. The state vector is described in figure 1.
Nodal displacements and forces are denoted q and f, where the subscripts ’L’ and ’R’ describe
the cell’s left and right faces. Both edges have the same number n of degrees of freedom. Mesh
compatibility is assumed between the cells. The governing equation in a cell at frequency ω is
written :

(−ω2M + K)q = f (1)

where M,K are the mass and complex stiffness matrices, respectively. A dynamic condensation
of the inner DOFs can be required if the structure is periodic. The governing equation can be
written by reordering the DOFs :[

KLL KLR

KRL KRR

]
− ω2

[
MLL MLR

MRL MRR

]{
qL

qR

}
=

{
fL
fR

}
(2)

2
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Figure 1. Illustration of a waveguide and the state vector of a unit cell.

where Mii and Kii are symmetric, Mt
LR = MRL and Kt

LR = KRL. λ = e−jkd is the prop-
agation constant, describing wave propagation over the cell length d and k is the associated
wavenumber, considering force equilibrium

λfL + fR = 0 (3)

in a cell and Bloch’s theorem:
qR = λqL (4)

into Eq. (2), it yields the following spectral eigenproblem :

S(λ, ω) = (λDLR + (DLL + DRR) +
1

λ
DRL+)Φ = 0 (5)

where the solutions Φ stand for the wave shape associated with the displacements qL of the
waveguide’s cell. In damped waveguides, complex wavenumbers are associated to decaying
waves. Defining the state vector : Φ = [(Φq)

t, (Φf )
t]t, the spectral problem can be written

using the symplectic transfer matrix T.

TΦ =

[
D−1

LRDLL D−1
LR

DRL − DRRD−1
LRDLL −DRRD−1

LR

]{
Φq

Φf

}
= λ

{
Φq

Φf

}
(6)

Here, the waves associated with positive wavenumber are travelling in the positive x-direction
and the negative wavenumbers describe propagation in the negative x-direction. The dynamical
behaviour of the global system can be expressed by expanding amplitudes of incident and re-
flected waves on a basis of eigenvectors. If the structure is undamped, solutions are divided into
propagative waves, whose wavenumbers are real, and evanescent waves for which wavenumbers
are imaginary. In dissipative case, complex wavenumbers are associated to decaying waves.

3 DISPERSION CHARACTERISTICS OF A SANDWICH PLATE

3.1 Description of the composite waveguide

The rectangular sandwich waveguide is composed of a 8 mm thick homogenised honeycomb
core surrounded by 1 mm thick fiber-reinforced skins. The 400 mm width cross-section is mod-
elled using 360 linear block elements having 8-nodes and 3 degrees of freedom (DOF) per

3
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node. The waveguide is described in figure 2, a structural loss factor η = 0.01 is assumed and a
detailed description of the materials is given in tables 1 and 2.

Material Density (kg.m−1) Young Modulus (Pa) Shear Modulus (Pa)
Ex = 5× 106 Gxy = 1× 106

Nomex 24 Ey = 5× 106 Gxz = 10.13× 106

Ez = 46.6× 106 Gyz = 10.13× 106

Table 1. Material properties of honeycomb core

Material Density (kg.m−1) Young Modulus (Pa) Shear Modulus (Pa)
Ex = 81× 109 Gxy = 2.5× 109

TC skin 1451 Ey = 81× 109 Gxz = 2.8× 109

Ez = 3.35× 109 Gyz = 2.8× 109

Table 2. Material properties of fiber-reinforced skins

Figure 2. Finite element model of sandwich plate involving finite width.

3.2 Propagating waves and shapes

The wavenumbers associated with the propagating waves in the sandwich waveguide are shown
in figure 3. The continuous lines (—) describe first-order waves while dashed lines (- - -)
represent high-order propagating waves, associated with deformed cross-sections. It can be
noticed that numerous high-order waves are propagating in this structure, in addition to the
four first-order waves (transverse and in-plane flexural, torsional and longitudinal waves). The
cross-sectional deformed shapes associated with these first-order waves are shown in figure 4.
In the considered structure, high-order waves are associated with sinusoidal deformation of the
waveguide’s cross-section. Their shapes are described in figure 5. The spatial attenuations of
the propagating waves in the frequency range [0, 4000] Hz are shown in figure 6. The wave
amplitudes are given after a one meter propagation in the main direction. Although high-order
waves share the same asymptotic group velocity of the first-order flexural and torsional waves,
their spatial attenuations exhibit different behaviour close to each of their cut-on frequencies.

4
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Figure 3. Real part of the wavenumbers associated with propagating, positive-going waves.

Figure 4. Deformed shapes associated with the first-order propagating waves.

Figure 5. Deformed shapes associated with high-order propagating waves.
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Figure 6: Amplitudes of the propagating waves in the sandwich waveguide after 1 meter prop-
agation.

4 TIME ANALYSIS USING WAVE APPROPRIATION

This work is concerned with the propagation of the aforementioned high-order waves in a sand-
wich plate of finite dimensions. Therefore, the actuation of the waves described in figure 5 is
proposed using localized vertical displacements. The shape appropriation is shown in figure 7
for the 4th order flexural wave.

Figure 7. Shape appropriation of the 4th-order flexural wave.

The transient response under pulse train excitation (see figure 8) is determined using
time-explicit simulation. The frequency spectrum of the pulse is described in figure 9. A
reduced dispersion of the pulse train can be obtained by narrowing the frequency spectrum
bandwidth. It can be done by increasing the number of periods in the pulse train. In figure 10,
the time response of the waveguide is described under a 2nd-order wave at 1k Hz . Noteworthy,
the wave pulse propagates without coupling effects and a slight dispersion. It can be explained
since the frequency spectrum involves different group velocities for a given wave. Therefore, is
seems advantageous to generates waves at higher frequencies. Similarly, the propagation of the
4th-order wave is shown for a 2k Hz pulse involving 8 periods is shown in figure 11.
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Figure 9. Frequency spectrum of the pulse.

Figure 10. Propagation and dispersion of a 2nd-order wave generated at 1k Hz.

Figure 11. Propagation and dispersion of a 4nd-order wave generated at 2k Hz.
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5 DISCUSSIONS

This paper is concerned with the time response of a sandwich waveguide to high-order waves,
generated by appropriation of their propagating wave shapes. First, the wave dispersion char-
acteristics are determined using the WFEM. Then, the wave amplitudes are compared for first-
and high-order waves after 1 meter of propagation in the considered waveguide, assuming a
constant structural loss factor η = 0.01. Noteworthy, the wave attenuation is higher close to the
cut-on frequencies, meaning that higher frequencies should be considered for actuating high-
order propagating waves. The waves shapes being associated with sinusoidal mode shapes of
the cross section, a reduced number of punctual displacements is required for producing the
wave appropriation. The time response is determined for two different wave types at 1k Hz and
2k Hz. A good generation of the wave pulse is produced with a weak dispersion and no wave
conversion. Therefore, it is shown that a high-order wave involving deformed cross-section
can be easily actuated and propagates with dispersion characteristics predicted by the WFEM.
Furthermore, these waves are expected to provide further information on defects or structural
perturbations in composite, heterogeneous or large-scaled waveguides involving localized or
high-order waves.
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ABSTRACT

This paper presents an efficient Wave Based modelling procedure to predict the absorption and
transmission coefficient of infinite poroelastic materials containing a periodic grid of inclusions.
As compared to standard numerical prediction schemes it offers the following advantages: (1)
contrarily to Transfer Matrix Methods the layers do not need to be homogeneous, (2) contrarily
to multipole methods, the inclusions do not need to be circular, (3) contrarily to element based
prediction techniques, unbounded domains can easily be accounted for. Moreover, the proce-
dure allows more easily for optimisation routines since it is a meshless and computationally
more efficient technique. The Wave Based Method is an indirect Trefftz approach; it approxi-
mates the dynamic fields using a weighted sum of exact solutions of the governing differential
equations. The Multi-Level Wave Based Method, which allows to describe the dynamic field
of a cavity containing an inclusion, is extended in two ways: (1) Bloch-Floquet conditions are
imposed on the boundaries to take into account the periodicity of the complete structure and
(2) novel unbounded acoustic wave functions are presented that fulfil the acoustic Helmholtz
equation, the Sommerfeld radiation condition and the Bloch-Floquet conditions. The imple-
mentation of the method is validated with the multipole method.
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1 INTRODUCTION

In many industrial applications poroelastic materials are applied as efficient noise reduction
measures. These materials show to be most effective in the mid to high frequency range where
the acoustic wavelengths are of the same order of magnitude as the thickness of the material. In
the past decades, much research effort is spent in order to increase the absorption of the material
in the low frequency range. Often multilayered structures are applied in order to prohibit wave
propagation, combining different kinds of porous and viscous materials combined with air gaps.
Although effective, this approach may lead to heavier and more bulky solutions. Another ap-
proach consists in studying inhomogeneous materials, such as double porosity materials [1] or
poroelastic materials containing inclusions [2]. This paper focuses on the numerical modelling
of the latter.

An efficient Wave Based modelling procedure is presented to predict the absorption and
transmission coefficient of laterally infinite poroelastic materials containing a periodic grid of
inclusions. The Wave Based Method (WBM) [3, 4] is an indirect Trefftz approach; it approxi-
mates the dynamic fields using a weighted sum of exact solutions of the governing differential
equation(s). It can be applied to any dynamic problem of which mathematical description of
the governing physics can be cast into a (number of) Helmholtz equation(s). The unknowns
are the contribution factors of the wave functions. A sufficient condition for the WBM to con-
verge is that the considered problem domains are convex. Non-convex domains need to be
partitioned into a (preferably small) number of subdomains. When considering geometries con-
taining inclusions, it is clear that the standard WBM cannot easily be applied as it would lead
to many subdomains. For circular inclusions it would even be impossible. To overcome these
constraints, the Multi-Level WBM (ML-WBM) has been developed [5]. The bounded domain
and each of the inclusions are considered in a different ‘level’ as if the others are not present.
Their approximation sets are then combined using a weighted residual approach.

When considering an acoustic plane wave impinging on an infinite 2D poroelastic mate-
rial with periodic inclusions, the response of the entire structure is characterized by the response
of a unit cell. The theorem of Bloch states that the relative amplitude change and phase shift
of a wave propagating through an infinite periodic structure, is the same across each cell; as a
result the response of any unit cell can be expressed in terms of the response of a reference unit
cell multiplied by an exponential term that defines the amplitude and the phase shift as the wave
propagates from the reference cell to neigbouring cells.

In this paper, the ML-WBM is extended in two ways: (1) Bloch-Floquet conditions are
imposed on the boundaries to take into account the periodicity of the complete structure and (2)
novel unbounded acoustic wave functions are presented that fulfil the acoustic Helmholtz equa-
tion as well as the Sommerfeld radiation condition and Bloch-Floquet conditions. As compared
to standard numerical prediction schemes it offers the following advantages: (1) contrarily to
Transfer Matrix Methods the layers do not need to be homogeneous, (2) contrarily to multipole
methods, the inclusions do not need to be circular, (3) contrarily to element based prediction
techniques, unbounded domains can easily be accounted for. Moreover, the procedure is mesh-
less such that it more easily allows for optimization routines.

The implementation of the method is validated with the multipole method. Two exam-
ples show the effect of different types of inclusions on the absorption as well as the transmission
coefficient.

2 PROBLEM DESCRIPTION

The mathematical problem setting of a general 2D periodic coupled (semi-) infinite acoustic-
poroelastic steady-state problem containing rigid circular inclusions, as shown in Figure 1 is

2
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given in this section. A time-harmonic motion with ejωt-dependence is assumed.
The problem domain Ω can be divided into two non-overlapping domains Ωa and Ωe,

containing air and a poroelastic medium, described as an equivalent fluid, respectively. A plane
wave is impinging on the poroelastic structure, incident at an angle θ. The thickness of the
poroelastic structure is denoted Ly and the heterogeneities are periodic in the x-direction with
period Lx. In the application cases of this paper, the inclusions are considered rigid (i.e. Neu-
mann boundary conditions) and circular. In a completely similar way, other boundary condi-
tions can be introduced. Moreover, the Multi-Level WBM allows to study different inclusion
geometries as well; there is no restriction to circular geometries.
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Figure 1: Problem description of a 2D infinite poroelastic structure with periodic circular inclu-
sions, coupled to two infinite acoustic domains.

It is assumed that the poroelastic material has a rigid frame and can be modelled as an
equivalent fluid medium, with a complex effective density ρe and effective compressibility Ke,
following the same expressions as in [2] The steady-state pressure pe(r), inside the medium
Ωe, is governed by the Helmholtz equation. Also the acoustic pressure, pa(r), in medium Ωa is
governed by the Helmholtz equation. Consequently, the steady state pressure p•(r), with • = a
for the acoustic and • = e for the equivalent fluid case is given by:

r ∈ Ω• : ∇2p•(r) + k2•p•(r) = F•(r), (1)

where,∇2 is the Laplacian operator, k• = ω/c• is the wave number of medium Ω•. The fluid is
excited by a source defined by F•(r).

Due to the geometrical periodicity and the plane wave nature of the excitation, the re-
sulting dynamic fields have to be periodic in the x-direction as well. The dynamic fields in all
cells can be related to the one of a single cell using the Bloch-Floquet relation [6]:

∀ N ∈ Z : p•(x+NLx, y) = p•(x, y)e−jkaxNLx , (2)

where kax = ka cos θ.
In this paper, only Sommerfeld, Neumann boundary conditions and coupling conditions

between an equivalent fluid and an acoustic domains are considered. On the exterior acoustic
boundary at infinity, Γ∞a , the former the condition applies:

r ∈ Γ∞a : R∞a(r) = lim
|r|→∞

(√
|r|
(∂pa(r)

∂|r|
+ jkapa(r)

))
= 0 . (3)

3
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On the rigid boundaries determined by the inclusions, Γve the following residual applies:

r ∈ Γve : Rve(r) = Lve(pe(r))− v̄e,n = 0, (4)

with v̄e,n the prescribed value for the normal velocity, being 0 m/s for a rigid boundary. The
velocity operator is defined as:

Lv•(∗) =
j

ρ•ω

∂∗
∂γn

, (5)

with γn the normal direction to the boundary, pointing outwards.
On the interfaces ΓIae between the acoustic and the poroelastic medium, the continuity

of pressure and velocity are imposed:

r ∈ ΓIae :

{
RIpae(r) = pa(r)− pe(r) = 0,
RIvae(r) = Lva(pa(r)) + Lve(pe(r)) = 0.

(6)

The governing Helmholtz equations in the different domains (1), the periodicity conditions (2),
the applied boundary conditions (3)-(4) and interface conditions (6) define a unique pressure
field.

3 MULTI-LEVEL WAVE BASED METHOD

The main idea of the WBM Multi-Level approach [5] is to consider the different inclusions and
the bounded domain as different ‘levels’ of the problem. Each level considers the scattering
of one specific object, or the dynamic wave field within the bounded domain as if the other
inclusions and/or the bounded domain were not present. The total solution field can then be
obtained by combining the different levels together in a weighted residual approach, using the
superposition principle. The concept is explained for the simple acoustic problem in Figure 2
showing a bounded problem domain with one circular inclusion. For a complete discussion, the
reader is referred to [5].

Wa

Gva

=

+
G

8a

Gt,va

Wa

(1,1)

(1,1)

Wa

(1)

Weighted residual formulation

Original problem with
a circular inclusion

Bounded level Unbounded level

Figure 2: Graphical representation of the Multi-Level modelling concept for bounded problems.

The Multi-Level WBM approach consists of four steps that are briefly revisited for this
simple problem setting:

4
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1. Division of the original problem into levels
In a first step the original problem is divided into a number of levels: the first level
includes the bounded problem as if there were no inclusions present. If the bounded
domain is non-convex, it is further partitioned into convex subdomains (not needed in this
case). This bounded subdomain is indicated Ω

(1)
a where subscript (1) indicates the index

of the bounded subdomain. The other level considers the scattering due the inclusion as
if the bounded domain was not present. The truncation circle Γ

(1,1)
t,va circumscribes the

inclusion (it this case it is coinciding with the actual boundary). The first subscript digit
indicates the index of the bounded subdomain to which the inclusion belongs, the second
indicates the index of the unbounded level. In this specific case only Neumann boundary
conditions are applied on the truncation surface. The unbounded acoustic subdomain
exterior to Γ

(1,1)
t,va is denoted Ω

(1,1)
a .

2. Selection of wave functions for the different levels:
For each subdomain belonging to a level, a suitable wave function set is selected to de-
scribe its dynamic field. Following the WBM procedure [4, 5], the acoustic pressure is
approximated by a solution expansion p̂(•)a (r):

p(•)a (r) ' p̂(•)a (r) =

n
(•)
a,w∑
w=1

p(•)a,wΦ(•)
a,w(r) + p̂a,q(r) = Φ(•)

a (r) p(•)
a,w + p̂a,q(r). (7)

The wave function contributions p(•)a,w are the weighting factors for each of the selected
wave functions Φ

(•)
a,w. All weighting factors together form the vector of degrees of freedom

p
(1)
a,w. The corresponding a priori defined wave functions are collected in the row vector

Φ
(1)
a . The particular solution p̂a,q(r) accounts for the effect of source terms, resulting

from an inhomogeneous Helmholtz equation (1). For this particular example, this term
vanishes. For this example, • can be replaced by 1 for the bounded domain or 1,1 for the
unbounded domain.

For the 2D bounded subdomain, two types of wave functions are distinguished, the so-
called r- and s-set:

n
(1)
a,w∑
w=1

p(1)a,wΦ(1)
a,w(r) =

n
(1)
a,wr∑
wr=1

p(1)a,wr
Φ(1)
a,wr

(r) +

n
(1)
a,ws∑
ws=1

p(1)a,ws
Φ(1)
a,ws

(r) (8)

with n(α)
a,w = n

(1)
a,wr + n

(1)
a,ws . These wave functions are defined as:

Φ(1)
a,w (x, y) =

 Φ
(1)
a,wr(x, y) = cos(k

(1)
a,xwrx) e−jk

(1)
a,ywry

Φ
(1)
a,ws(x, y) = e−jk

(1)
a,xwsx cos(k

(1)
a,ywsy)

. (9)

Desmet [3] has shown that the following selection of wave number components leads to
a converging wave function set:

(
k(1)a,xwr

, k(1)a,ywr

)
=

(
w

(1)
1a π

L
(1)
xa

,±
√
k2a −

(
k
(1)
a,xwr

)2)
(
k(1)a,xws

, k(1)a,yws

)
=

(
±
√
k2a −

(
k
(1)
a,yws

)2
,
w

(1)
2a π

L
(1)
ya

)
(10)
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with w(1)
1a and w(1)

2a = 0, 1, 2, . . .. The dimensions L(1)
xa and L(1)

ya represent the dimensions
of the (smallest) bounding rectangle, circumscribing the considered subdomain Ω

(1)
a .

The wave functions for the unbounded domain Ω
(1,1)
a are chosen to explicitly comply

with not only the Helmholtz equation, but also with the Sommerfeld radiation condition
at Γ∞a . The following wave function set for unbounded domains exterior to a circular
truncation curve with radius Rta is used, distinguishing between a c- and an s-set:

Φ(1,1)
a,w (r, θ) =

 Φ
(1,1)
a,wc (r, θ) = H

(2)

w
(1,1)
1a

(kar) cos(w
(1,1)
1a θ)

Φ
(1,1)
a,ws (r, θ) = H

(2)

w
(1,1)
2a

(kar) sin(w
(1,1)
2a θ)

(11)

with w
(1,1)
1a = 0, 1, 2, . . . and w

(1,1)
2a = 1, 2, 3, . . . and H

(2)
n (•) is the n-th order Hankel

function of the second kind. As for bounded domains, the series of functions (11) needs
to truncated in order to be used in a numerical scheme. A similar truncation rule as for the
bounded domains is used and determines the highest orders w1a,max and w2a,max of the
Hankel functions used in the exterior wave function expansion [7]. We denote p̂(1,1)a (r)

the field variable of the unbounded acoustic subdomain Ω
(1,1)
a .

The pressure field p̂(1
′)

a (r) in the compound subdomain Ω
(1′)
a =Ω

(1)
a

⋂
Ω

(1,1)
a can be written

as:
r ∈ Ω(1′)

a : p̂(1
′)

a (r) = p̂(1)a (r) + p̂(1,1)a (r). (12)

3. Construction of the system of equations:
The residuals on boundaries and interfaces are minimised using a weighted Galerkin ap-
proach and using the compound wave function set for subdomains Ω

(1′)
a . Different test

functions are selected for the different boundaries. The only prerequisite to have valid
test functions is that they need to be able to represent an arbitrary field on that specific
boundary. As unbounded wave functions can accurately represent any field on the trunca-
tion surface they are associated to, they are used as weighting functions on that truncation
boundary. A similar reasoning is followed for the bounded wave functions defined for
Ω

(1)
a : they can be used as weighting functions on the boundaries defining the bounded

level.

4. Solution and post-processing:
The system matrices can be solved for the unknown contribution factors of all wave func-
tions. In a post-processing step, the response field can be evaluated.

4 WBM FOR PERIODIC STRUCTURES

As pointed out in Section 2 it is sufficient to study the response in one unit cell to be able to re-
construct the response in any point of the system. The bounded, poroelastic part of the problem
domain can be modelled using the Multi-Level WBM using the equivalent fluid properties to
determine the wave number components in the pressure expansions. The next subsections dis-
cuss the application of the periodicity conditions and the wave functions in the semi-unbounded
periodic acoustic domains.

4.1 Bloch-Floquet boundary conditions in the multilevel WBM framework

The wave functions used in the Multi-Level WBM framework do not fulfil the periodicity con-
dition, equation (2). The advantage of using the WBM is, however, that there is no restriction

6
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to circular inclusions as compared to the multipole method. Geometrically not too complex
inclusions can be dealt with using the regular multilevel WBM.

The Bloch-Floquet periodicity conditions have to be embedded in the WBM in a weak
sense. The following residuals are minimised on the left (ΓBFLe) and right boundary (ΓBFRe)
of the poroelastic unit cell:

r ∈ ΓBFLe : RBFLe(r) = p(r)− p(rr)ejkaxLx = 0, (13)
r ∈ ΓBFRe : RBFRe(r) = Lve (p(r)) + Lve

(
p(rl)

)
e−jkaxLx = 0, (14)

in which rl ∈ ΓBFLe and rr ∈ ΓBFRe .

4.2 Semi-unbounded Bloch-Floquet acoustic wave functions

A novel wave function set is needed in the semi-unbounded acoustic domains to avoid integra-
tion on infinite boundaries. Again, the pressure field can be approximated by a weighted set of
wave functions, equation (7). Wave functions are selected that fulfil the Helmholtz equation,
the Sommerfeld radiation condition and the Bloch-Floquet periodicity condition. The wave
functions Φ

(α)
a,w(r) for a semi-unbounded periodic domain are a plane wave expansion:

Φ(α)
a,w(r (x, y)) = e−j(kBFx,wx+kBFy,wy). (15)

The wave number components kBFx,w are selected such that the periodicity condition is
fulfilled:

k
(α)
BFx,w

= kax +
2mπ

Lx
, (16)

with m ∈ Z. In order to fulfil the Helmholtz equation, the wave numbers kBFy,w are selected
as:

kBFy,w(α) = ±
√
k2a −

(
k
(α)
BFx,w

)2
, (17)

and the sign of the root is selected such that the waves are purely outgoing and consequently
the Sommerfeld condition is fulfilled.

A plane wave source is exciting the system. For this source, the particular term yields:

p̂a,q(r) = Ae−jka·r, (18)

with A the plane wave amplitude, ka = (kax, kay) = (ka cos θ, ka sin θ) the wave vector and θ
the propagation angle, see also Figure 1.

4.3 Reflection, transmission and absorption coefficient evaluation

Due to the plane wave nature of the wave functions in the semi-unbounded periodic acoustic
domains, the hemispherical reflection and transmission coefficients,R and T , can be calculated
as:

R =
∑
w

<(k
(1)
BFyw

)||p(1)a,w||2

kay||A||2
, (19)

T =
∑
w

<(k
(2)
BFyw

)||p(2)a,w||2

kay||A||2
. (20)

The absorption coefficient A can be evaluated via:

A = 1−R− T . (21)

7
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5 NUMERICAL VALIDATION

The validation case considers the problem setting shown in Figure 3. The dimensions, the
frequency range as well as the material properties are based on values available from literature
[8].

Wa

L
x

We

R
Ly

Wa

k

q

a

(2)

(1)

8

G
a

Figure 3: Acoustic-Poroelastic-Acoustic unit cell problem geometry with a circular rigid inclu-
sion.

The angle of incidence is 3π/2. The radius of the rigid inclusionR is taken to be 2.5 mm.
The thickness Ly of the foam and the distance Lx in between the inclusions are both 1 cm.

Figure 4 shows the absorption, reflection, and transmission coefficient of the periodic
medium, with and without periodic rigid circular inclusions, calculated with the WBM and the
multipole method for frequencies between 1 kHz and 300 kHz. A perfect match between the
WBM and the MPM is seen, confirming the validity of the former.

It is seen that the reflection coefficient is clearly increased due to the addition of the
inclusions. Some of the incoming energy is reflected on the rigid inclusion instead of travelling
through the material. The absorption coefficient is increased around the modified plate modes,
leading to an entrapment of energy. Except around these frequencies, the absorption coefficient
is not altered to a large extent. The increased reflection and absorption coefficient obviously
have a beneficial effect on the obtained transmission coefficient.

6 CONCLUDING REMARKS

This paper discusses the extension of the Multi-Level Wave Based Method to predict the absorp-
tion, reflection and transmission coefficients of poroelastic structures with periodic inclusions.
In this paper, as a first step, only circular inclusions are considered, although this is no limita-
tion for the method. The poroelastic material is modelled as an equivalent fluid. Bloch-Floquet
periodicity conditions are imposed in a weak sense, minimising residuals on the boundary con-
ditions. A novel wave function set is applied for the acoustic semi-infinite domains; each wave
function fulfills the acoustic Helmholtz equation, the Sommerfeld radiation condition and the
periodicity conditions. The method has been applied for a simple sound transmission problem
and the results obtained are confirmed by a multipole implementation. In a next step, the method
will be applied in optimisation studies as the procedure is meshless and there is no restriction
towards circular inclusions.

8
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Figure 4: Absorption coefficient (top), reflection coefficient (middle) and transmission coeffi-
cient (bottom) for the polyurethane foam with and without circular inclusions.
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ABSTRACT 
 

In the light of fossil energy dry, the transportation industries are looking on lighter 

materials to be applied on their vehicles, in order to reduce their energy consumptions. 

Composite materials perfectly meet the needs of these industries by offering light weight and high 

resistance. Although these materials still lack of comprehension regarding their dynamic 

behavior and the visualization of typical flaws like delamination or tears. Moreover considering 

wide structures like a plane wing makes usual ultrasonic methods uncomfortable because of 

complex implementation and the amount of time needed. The goal of our work is to develop a fast 

vibratory method that could detect flaws on large composite structures with an improvement of 

the Force Analysis Technique. In a second time if necessary a sharper scanning could be done 

with ultrasonic methods around the defect region. 

Created around 1994 the Force Analysis Technique allows detection of vibratory source 

by using the equation of motion. Its local aspect confers it a strong point since the boundary 

conditions are not necessary. Around 2012 an important enhancement of the Force Analysis 

Technique was brought by applying it out of the vibratory sources, giving access to local 

cartography of Young modulus and structural damping. The latest improvement deals with non-

destructive testing for flaw detection on composite materials, through the analysis of its materials 

parameters (Young modulus, structural damping and/or shear modulus) in space domain and in 

frequency domain. 

Our first development concerns composite beams. In order to best consider such material 

we used Timoshenko’s beam theory which involves shearing effect unlike the mostly spread Euler-

Bernoulli beam theory. By applying the equation of motion out of controlled vibratory sources 

one can deduce the local material parameters. If a flaw is present in the scanned area, a strong 
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2 

 

singularity should appear on the cartographies. Furthermore defects are linked to physical 

consequence making our method able to deduce the kind of flaw: for instance a delamination 

might only appear as a variation of the shear modulus, a local lack of viscosity would be seen 

solely on the cartography of structural damping, etc. 

The presentation will deal with a general explanation of our method, and results obtained from 

various kind of flaws existing on composite beams and will also highlight the advantages of 

considering Timoshenko theory instead of the Euler-Bernoulli’s one. Then we’ll draw some 

conclusions about feasibility of our procedure and opportunities to apply it on more complex 

composite structures. 
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ABSTRACT

Recently the interest of aerospace and automotive industries toward the study of the vibra-
tional response of orthotropic shell structures has grown rapidly. The low and high-frequency
responses can be correctly simulated by the Finite Element Method (FEM) or the Statistical En-
ergy Analysis (SEA) respectively. Over the last few years some Trefftz methods such as the Vari-
ational Theory of Complex Rays (VTCR) has been proposed to address the medium-frequency
range. In this paper the extension of the VTCR to orthotropic shell structures has been devel-
oped. The theory has been generalized to orthotropic materials and a significant numerical
example has been proposed to illustrate the effectiveness of the method.
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1 INTRODUCTION

The increased use of composite shell structures has fostered interest towards virtual testing of
vibrational behavior of orthotropic shell structures. In literature there are many methods opti-
mized to investigate a vibrational problem is a specific frequency range. [1] reports a detailed
description of these approaches. The present work focus on the mid-frequency range extending
the applicability of the Variational Theory of Complex Rays (VTCR) [2] to orthotropic shell
structures. This method approximates the vibrational problem solution as a sum of shape func-
tions that identically satisfy equilibrium equations and addresses boundary conditions in weak
form. This approach allows a priori independent approximations among subdomains granting
flexibility and robustness. VTCR has been already implemented in shallow shell theory [3] and
for orthotropic plates [4].

The present work extends the VTCR to orthotropic shell structures. First, the general
shell-VTCR theory is presented and corrections are introduced for orthotropic shells. After that,
a relevant numerical example is investigated to validate the strategy.

2 SHELL - VTCR

We will refer to the notation introduced in [5] where the general shell theory is described. Since
the VTCR is a Trefftz method, the solution is searched in a function set that satisfy equilibrium
equations. Boundary and corner residuals are addressed in weak form B = l where B is the
bilinear form, l is the linear form being VTCR a Galerkin method. [3] reports a more detailed
version of the weak variational formulation.

Since VTCR is a Trefftz method, any kind of shape function fSFi, proved that satisfy
equilibrium equations, can be chosen as solution in subdomain Ωi. In the present work plane
waves are used

fSF (xreli) ≈
n∑
l=1

aliĉlie
jklixrel , (1)

where aqi are amplitude coefficients determined by the weak form, kli is the wave vector, ĉli
unit direction vector, and xreli is the relative position vector in curvilinear coordinates {αi, βi}.
Without loss of generality, the wave vector can be divided in the wavenumber kli and the unit
direction vector of the wave vector k̂li

ki(l) = kli = klik̂li. (2)

kli and ĉli are chosen so that equilibrium equations are identically satisfied. The dis-
cretization is performed on k̂li. Two kind of plane waves are needed: evanescent and propaga-
tive. The difference lies on k̂li. It is

k̂li = LiOiTli · p (3)

Tli =

[
cos(θli) − sin(θli)
sin(θli) cos(θli)

]
, Oi = 8

√
DαiDβi

[
D
−1/4
αi 0

0 D
−1/4
βi

]
, Li =

[
Lαi 0
0 Lβi

]
(4)

where p = [1, 0]′ for propagative waves and p = [cosh(φmi), j sinh(φmi)]
′ for evanescent

waves, Lαi and Lβi are Lamé parameters, θli is the discretization angle over the unit circle,
and φmi is a real parameter that controls between the oscillatory and the evanescent part of the
evanescent wave. Figure 1 reports their qualitative behavior. Li and Oi are correction matrices
for orthotropic materials.

2
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(a) Propagative waves. (b) Evanescent waves.

Figure 1: Qualitative behavior of the propagative and evanescent waves described in Section 2.

3 NUMERICAL RESULTS

Figure 2 illustrates geometry of a complex frame structure and the amplitude magnitude of the
VTCR solution. Three sub-domains are connected by the same edge. The first two are cylinder
parts while the last one is a plate. All boundaries are clamped but left edge where an out-of-
plane oscillatory distributed load p = [1, 0, 0]′eiωtN/m is applied. For the sake of simplicity
thicknesses are constant h1 = h2 = h3 = 3mm as well as the damping factor η = 0.001.
Table 1 reports material properties as well as frequency.

f 3700 Hz
Eθ1 = Eθ2 = Ez3 125 GPa
Ey1 = Ey2 = Ey3 60 GPa

Gθy1 = Gθy2 = Gzy3i 18 GPa
νθy1 = νθy2 = νzy3 0.3
ρ1 = ρ2 = ρ3 2000 Kg/m3

Table 1: Orthotropic material properties and frequency examined of the numerical example
described in Section 3.

The VTCR implemented in MATLAB® is compared with a FEM reference generated by
ABAQUS® . The two programs are run on the same workstation and performances compared.
The error based on kinetic energy is

err =
|EK(uFEM)− EK(uV TCR)|

EK(uFEM)
. (5)

In this case the error is ≈ 8% due to small theory differences. Computational costs are
illustrated in Table 2. FEM mesh must be very refined to counteract the pollution effect [6]. For
this reason, VTCR greatly outperforms FEM in terms of time and memory consumption.

u = 0
u,n = 0

p = 1N/m θ̂

Ω2

Ω3Ω1

ŷ
ẑ

x̂

1m 1m

(a) Geometry. (b) VTCR. (c) FEM.

Figure 2: Geometry, VTCR and FEM solutions of the frame structure described in Section 3..

3
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Time consumption Memory consumption
FEM 1153 [s] 10 [Gb]

VTCR 4 [s] 70 [Kb]

Table 2: Performances comparison of the numerical example described in Section 3

4 CONCLUSIONS

Corrections for orthotropic materials were introduced in the general shell-VTCR theory. Since
at mid-frequency FEM suffers of pollution error, FEM mesh must be very refined. For this
reason, VTCR greatly outperforms FEM at mid-frequency.
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and Bernard Troclet. The Variational Theory of Complex Rays applied to the shallow shell
theory (accepted for publication). Computers & Structures, 2015.
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ABSTRACT

Structural vibrations can be measured with optical digital holography. Such a method provides
measurements with a very high spatial resolution and is a contactless technique. This method is
based on the interference between a reference laser beam and the field diffracted by the studied
object. Using a high speed camera, it can also be implemented in the time domain to investi-
gate non-stationary problems. Recent investigation shows the high-speed digital holography is
comparable with classical laser vibrometry.

Acoustic Black Hole (ABH) effect is a innovative method to reduce the structural vibra-
tion. The vibratory field inside an ABH is characterized by a strong variation of the wavelength
with space and an increase of the amplitude of the vibratory field at the extremity. In this paper,
we present an experimental investigation of the vibratory field inside an Acoustic Black Hole on
a beam.
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1 INTRODUCTION

In the domains of acoustics, vibro-acoustics, vibrations of structures or flow-induced vibra-
tions, both accelerometer and laser-vibrometry are the most favorite instruments for dynamic
measurements. Accelerometer is robust and cheap but is a pointwise only a punctual sensor
and is intrusive. Laser-vibrometry uses a laser beam to probe a dynamic object provides non-
contact, high accuracy and high temporal resolution measurements. In order to get full-field
data, a laser-scanning mechanism is required. This operation needs long time and the dynamic
specimen under interest must be quite stationary (i.e. highly controlled excitation). Full-field
evaluation can be obtained with holographic and speckle interferometry [1]. Vibration analysis
with optical holographic interferometry began with the works of Powell and Stetson [2] who
first established the principle of time-averaging. However, the stationary regime is a particu-
lar case for investigating the structure vibration behavior, and the characterization of structures
under operational or real functioning conditions requires analysis in the time domain. Then,
providing a real-time follow-up of the vibration amplitude, whatever the excitation condition,
is a challenge for full-field optical metrology [3]. As examples, problems that can not be ad-
dressed by a stationary approach are: vibrations of panels induced by hydro or aero-acoustic
sources, structural vibrations induced by squeak and rattle noise. We would like to take the
opportunity of the DYNCOMP’15 meeting to discuss about the vibration field measurement of
a structure supplying an Acoustic Black Hole.

2 PRINCIPLE : FROM HOLOGRAMS TO DISPLACEMENT FIELD

Basically, digital holography consists in recording an interference pattern using a sensor ar-
ranged as a matrix of pixels. In the set-up (Fig.1.a), the structure under interest is illuminated
by a laser beam, which is then scattered by the object surface.

(a) (b)

Figure 1. (a) Optical set-up and (b) Illustration of digital hologram post-processing

A hologram H is a quadratic sum of the both reference wave and object wave, and is
expressed as

H(x, y, t) = |R(x, y) +O(x, y, t)|2, (1)

where R(x, y) is defined as the reference plane wave. The object wave O(x, y, t) is
proportional to the object shape, and is described by

O(X, Y, t) = AO exp(j(ϕo(X, Y, t) + ψo(X, Y )), (2)

2
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where AO is the optical wave magnitude, ψo(X, Y ) is the optical surface phase and ϕo(X, Y, t)
represents the optical phase induced by the vibration field, in the object plane. The recorded
hologram includes complex information related to the amplitude and phase. The phase is pro-
portional to the optical path i.e. the distance between the object and the sensor. With two
successive phase maps (Fig.1.b), a phase difference can be calculated. This phase is calculated
through an inverse tangent function and is then obtained modulo 2 π. It exhibits ’numerical
fringes’ that can be interpreted as contour lines of the vibration. These numerical fringes need
to be unwrapped to obtain a continuous phase map being directly proportional to the displace-
ment field.

3 ACOUSTIC BLACK HOLE EFFECT MEASUREMENT

The Acoustic Black Hole effect is a innovative method to reduce the structural vibration. The
ABH effect takes advantage of flexural waves properties in plates of variable thickness : Mironov
[4] shows that if the thickness of the plate decreases sufficiently smoothly to zero close to the
edge, waves slow down and stop without being reflected. Different works [5] have shown
the complex behavior of the ABH extremity. We propose to take the advantage of the optical
method with contacless and full field measurement, to analyze these local complex vibratory
field. The optical setup is presented in Fig.2.a. In this study, a beam supplied a ABH extremity
is placed vertically and is suspended to a shaker (Fig.2.b), and is excited by a linear sweep-sine
from 20Hz to 10kHz.

(a) (b)

(c)

Figure 2: (a) Experimental set-up, (b) Picture of beam with ABH suspended to a shaker and
(c) Displacement map vs time evolution, result obtained with 512 x 128 pixels, and a time delay
between each map at 125 µs

3
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The observation area is 10cm x 2cm, corresponding to the lower extremity of the beam.
Fig.2.c shows the phase change (mod.2π) recorded at different instants of the sequence with
high-speed digital holography. The incoming 1D wave front can clearly be seen on the first
pictures. A wave conversion can then be observed since the field presents a 2D component. This
wave conversion may be due either to non plane incidence on the edge or to slight imperfections
at the ABH tip.

4 CONCLUSION

This paper present with few words the principle of this new metrological tools for vibration
analysis. High-speed digital holography give the possibility to a synchronous recording, of
spatial and temporal information of vibration field. This method allows to observe the complex
vibratory field on the edge of the beam supplying an ABH.
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ABSTRACT 
 

Satellites, as payloads of launch vehicles, are connected to the launcher by composite supporting 

structures. These structures are responsible for the transmission of dynamic excitations generated 

during the different launch phases, leading to a vibration environment around satellites 

potentially not friendly to be mastered. One simple way to reduce the payload dynamic 

environments is to isolate it from the rest of the launcher, by a soft mounting, and/or to damp the 

vibrations coming from the launcher.  

On ARIANE launchers, both strategies are investigated in order to increase the payload 

comfort, based on Launcher system requirements: 

 passive isolation devices to isolate the payload from Solid Rocket Boosters thrust 

oscillations: this kind of devices can be efficient but introduces some unusual complexities 

to be managed at launcher level due to the required flexibility, 

 damping carrying structures to damp launcher vibrations at the resonance, by integrating 

damping viscoelastic layers with moderate softness into composite carrying structures.  

 

In this paper, we focus on the damping carrying structures, with a presentation of the 

concept and an evaluation of associated benefits and drawbacks. 
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1 INTRODUCTION 

The dynamic environment generated by launchers on satellites is often significant and can 

sometimes lead to potential problems. One simple way to reduce the payload dynamic 

environments is to isolate it from the launcher, by a soft mounting, and/or to damp the vibrations 

coming from the launcher. On ARIANE launchers, both strategies are studied.  

For A5 Midlife Evolution (A5ME), a Passive Isolation Device (PID) has been developed 

to isolate the payloads from the Solid Rocket Boosters thrust oscillations, in order to improve 

payload comfort. This kind of solution has demonstrated a good efficiency but introduced some 

unusual complexities to be managed at launcher level due to the significant flexibility of the PID 

necessary to isolate.  

For future launchers, with potential applications to ARIANE 6 in case of need, another 

solution is currently investigated in an R&T context. It consists to damp the launcher’s vibrations 

by integrating damping viscoelastic material into composite carrying structures. The main idea is 

to add locally in the carrying structures (for example a payload adaptor or an inter-stage structure) 

some layers with moderate softness and high damping in order to attenuate the transmission of 

vibrations to the payload at the resonance. A prototype of such damping adaptor is currently 

developed in order to be tested on a full-scale demonstrator. The application of this technology is 

also studied to isolate the whole upper stage of a launcher, based on the same concept.  

This paper gives the main requirements in terms of stiffness and damping, describes the 

concept retained, following a trade-off on damping materials, and then gives a preliminary status 

in terms of efficiency from analyses. Also, main advantages and drawbacks of this solution are 

highlighted for future launcher application. 

 

2 LAUNCHER NEEDS AND REQUIREMENTS 

2.1 Launcher needs 

A launcher is a complex system presenting sometimes antagonist needs. For example, structural 

mass must be reduced to increase performance, but keeping sufficient stiffness to avoid 

controllability problems.This compromise leads to low damped structures and high 

transmissibility of vibrations. Moreover, Solid Rocket Boosters (SRB), used for the first phase of 

flight (first stage),generate high levels of vibration,at low frequencies, which are transmitted to 

payload and can be amplified in case of dynamic coupling at the resonance, due to the low level 

of structural damping, confirmed by flight analyses [1]. 

In order to mitigate this problem, an isolation device has been introduced on ARIANE 5 

between the boosters and the central stage. This solution reduces very significantly the 

transmissibility of dynamic loads to the payload.However, residual vibrations can still cause 

troubles and must be managed. It is why a special damping device called “SARO” [2] has been 

introduced on the upper stage of A5E/CA, and a PID has been developed for A5ME (concept 

derived from a shock attenuation device called SASSA [3]), in both cases to reduce lateral 

vibrations of the payload. 

For future launchers, ,AIRBUS investigatesalternative solutions in order to limit system 

impacts andto reduce the added mass by a functionalization of carrying structures. As an example, 

twotypes of structures are studied, more dedicated to longitudinal isolation needs: 

 A damping payload adaptor, 

 A damping launcher inter-stage structure. 
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The first structure is a prototype dedicated to demonstrate the efficiency of the concept by 

dynamic tests on-ground. The second one constitutes the main industrial potential target: indeed, 

the main idea is not to improve only payload comfort but also to reduce the dynamic environment 

of the whole upper stage of a launcher, including the payload of course but with less sensitivity to 

its characteristics in this case (low payload mass compare to upper stage one).  

2.2 Launcher requirements 

From preliminary future launchers studies, the main objective is to maximize the attenuation of 

SRB vibrationsduring the first phase of flight essentially in axial direction, and to minimize also 

launcher impacts associated to lateral motion (e.g.launcher controllabilityandpayloadrelative 

displacements). Consequently, a set of functional requirements has been determined at launcher 

level, expressed in terms of suspension modes characteristics targets: 

 Minimum lateral frequency: sufficiently high to avoid problems of controllability, but 

sufficiently low to reduce lateral vibrations (by isolation) 

 Maximum longitudinal frequency: sufficiently low to reduce longitudinal vibrations (by 

isolation) 

 Minimum damping: sufficiently high to attenuate excitability of the suspension modes and 

to increase the damping offirst launcher modes to improve launcher controllability, but not 

too much in order to avoid complexities at system level and increase shock 

transmissibility. 

It remains that this set of requirement is quite over-constrained, leading more or less to an 

optimal solution. 

In order to verify the strength and the functional performances of the product, thermo-

mechanical environment(ranges and cycles) has been specified. 

3 TRADE-OFF ON DAMPING MATERIALS  

3.1 General material trade-off analysis 

A trade-off has been initially performed in order to investigate existing solutions to increase 

structural damping on stiffstructures. It is well-known that there is a natural antagonism between 

damping and rigidity, illustrated by the diagram here below: polymers offers excellent damping 

but associated to low stiffness, contrary to metallic materials which have high stiffness and low 

damping. 

 

Figure 1. Generic properties of materials (stiffness-damping compromise) 
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Main conclusions of this trade-off were that: 

 for short term applications with high TRL required, only the introduction of 

elastomeric layers in a structure (metallic or composite) could be envisaged 

 for long term applications, a dedicated R&D program is foreseen in order to design 

functionalized materials, byinnovative architectures constituted for example of 

polymers embedded at subscales in a special core of composite materials. 

This paper deals only with the first short term applications. 

 

Another problematic is the sensitivity of elastomers to thermo-mechanical environments, 

self-heating, ageing, creeping, etc. In order to minimize associated dispersions, a dedicated set of 

requirements have been written to identify the most promising elastomer. 

Also, the bonding of the elastomer on metallic or composite parts constitutes a special 

challenge with respect to industrial constraints for manufacturing of large space structures. 

3.2 Elastomer characterization 

Elastomer selection was the result of a first set of optimisation loops (see next section), where the 

material properties played a first order role. The achievement of static and dynamic performance 

of the damping adaptor lead to the definition of a set of material specifications, regarding 

mechanical strength but also dynamic behaviour. 

Once a suitable elastomeric material was selected, a series of elementary testswas 

performed by LRCCP laboratoryon dedicated samples in shear and compression. Combination of 

static and dynamic loads wasapplied, in order to define hyperelastic and viscoelastic laws. In 

addition, the effect of cycle numbers wasalso investigated in order to verify the acceptability of 

self-heating effect (e.g. slightdecrease instiffness with time), an important topic in order to 

guarantee stiffness stability during flight: 

 
 

Figure 2. Shear sample test for elastomer characterization 

 

This fine characterisation of elastomer behaviour allowed the final tuning of the damping 

adaptor, described in the next section. 

Finally, elastomer bonding on composite materials is being investigated in order to 

identify the most efficient manufacturing process with respect to industrial constraints. 
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4 PRELIMINARY DESIGNS 

4.1 Damping Payload Adaptor 

The payload adaptor in launch vehicles is the intermediate structure connecting the payload 

(satellite) to the launcher structure. It is generally constituted of truncated conical shapes, and 

quite a few variants exist, meeting different sets of requirements. The following picture shows the 

overall geometry of payload adaptor: 

 

 

Figure 3. Global geometry of a typical payload adaptor structure 

 

For the definition of a damping adaptor, a first decision was made to keep the upper 

interface (interface to payload) and the lower interface (interface to launcher) unchanged, making 

future integration easier. Some adaptors have an intermediate structure allowing flexibility in the 

longitudinal direction for adaptation to various payload geometries. This intermediate location 

was chosen as a potential candidate for the implementation of a “damping layer”. 

The correct representation of the local stiffness and damping of a thin elastomer layer 

requires the use of volume elements instead of the usual shell elements used for everyday 

modelling practice. An automatic mesh generator was developed in order to change very quickly 

the section of the adaptor and to explore many design options in a quick and efficient way. Some 

of the concepts explored in the study are displayed in the next figure:  
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Figure 4. Illustration of possible elastomeric layer introduction 

In this figure, blue elements correspond to metallic parts, pink ones to composite 

materials, and yellow ones to the rubber layer to be optimised. As visible in the figure, many 

options were compared, with various layer locations, inclination, and so on… It turns out that the 

dynamic behaviour of the overallsystem { launch vehicle+adaptor+payload } is very sensitive to 

the detailed design of the rubber layer. 

 

Then the optimisation itself was based on a compromise between: 

- The dynamic targets set in section 2 (expressed in terms of modal frequencies) 

- The damping performance which is evaluated by the computation of frequency 

response functions for various excitations 

- Static requirements for strength analyses 

 

This design loop becomes even more complex where the nature of the elastomeric 

material is taken into account, together with its thickness in each configuration. The following 

graph shows the calculated longitudinal and lateral transmissibility obtained for a number of 

possible designs.  

 

 
 

Figure 5. Acceleration transmissibility from damping payload adaptor (basis to top) 
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The modal frequency shifts are very large, and the comparison must be made 

simultaneouslyfor longitudinal and lateral directions. Since the requirement for longitudinal 

frequency is to lower it and the requirement for the lateral frequency is to keep it above a given 

threshold, the two graphs show that it is difficult to have a discriminating action on each of them. 

 

After this global and very large optimisation process, best solution was chosen and some 

fine tuning was carried out: in fact, there are even other degrees of freedom to use, for example 

the distribution of rubber elements along the circumferential direction. A complete layer is not the 

only option.  

 

4.2 Damping Launcher Inter-stage Structure 

The same approach was extended in order to evaluate the potential of this damping layer concept 

to control vibration transmission for an entire launcher upper stage. Of course the requirements in 

terms of space and mass were quite different. 

 

The optimisation and design process was carried out on a simplified model of a future 

launcher, not known with a high precision at the time of the study. The location of the possible 

viscoelastic layer was chosen to be in between the main launcher body and the upper stage, where 

a truncated conical structure is present. This conical structure connects a smaller diameter in the 

main body to a larger one in the upper stage. 

 

In the following figure, the dynamic effect of such an inter-stage layer is computed in 

terms of acceleration transmissibility in a wide frequency range. The stiffness effect (lowering of 

typical lateral and longitudinal frequencies) together with the damping effect are clearly visible, in 

comparison to the reference stiff design. 

 

 

Figure 6. Acceleration transmissibility from damping launcher inter-stage structure (basis to top) 

 

This, together with the static evaluation based on existing elastomeric material mechanical 

property data, proved that the introduction of an elastomeric layer between main launcher body 

and upper stage could have the required effect on payload comfort. Of course, given the structure 

size and weight, manufacturing process issues would still need to be solved. 
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5 PROTOTYPE, TESTS& PERSPECTIVES 

In order to increase the maturity of damping structures for space applications, the manufacturing 

of a full-scale prototype ofdamping payload adaptor is foreseen. The objective is to perform 

dynamic tests on a representative payload mounted on such carrying structure exposed toflight-

representative environments: transient excitation for lift-off, random excitationfor buffeting at 

transonic and sine excitation for SRB thrust oscillations. 

The achievement of those demonstrator tests willallow the validation ofdynamic 

simulations and improve the maturity of this technology (TRL 6 expected). This step is needed in 

order to convince programs to integrate suchpromising damping structures, for example at the 

inter-stage of a new launcher. 

6 CONCLUDING REMARKS 

In order to reduce the transmission of vibrations generated by a launcher to the satellites, the 

solutions already developed for ARIANE 5 launchers are to add isolation devices,located at 

boosters and/or near payload attachments, or damping device. Both of these solutions are efficient 

butincreaselauncher system complexitydue tosoftening(lower modal frequencies)and/ornon-

linearity induced.  

 An alternative solution, presented in this paper, consistsinincreasing the damping of 

carrying structures, limiting softening and non-linearity effects as far as possible.Based on a trade-

off study on damping structures and materials, it remains that the simplest and efficient way could 

be to integrate elastomeric layers insides composite (or metallic) structures, based on mature 

materials.  

 Twoexamples of design were proposed and studied: a damping payload adaptor and a 

damping inter-stage structure. Asuitableelastomer materialwas identified and characterized by 

sample tests. Preliminary static and dynamic analyses have demonstrated the potential of such 

technology to transmit the flight loads correctly,reducingthe transmission of the dynamic 

environment by a promising factor (> 4) compared to current structures. Also, such technology 

correctly located on a launcher could improve both launcher and payload comfort, without 

significant system impacts.  

 However, the manufacturing process (especially the elastomer bonding on large space 

structures) remains to be matured in order to demonstrate the industrial feasibility.It is why a 

second step is foreseen to manufacture a full-scale prototype of damping payload adaptor, to be 

tested on-ground with flight-representativedynamic environments. This step is needed to reach a 

sufficient pre-industrial maturity level (TRL 6), in order to be onboard in new launchers 

developments. 
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ABSTRACT

Currently, in different industrial fields as transport or aerospace, a research effort is lead con-
cerning structural weight reduction. One of the most promising solutions is the use of composite
structures and, in particular, the fibers-based composite structures. In the same time, there is
an intensification of the operational dynamic environment and an increase of durability re-
quirements. One way to manage this point is to design and manufacture adaptive composite
structures. To integrate new functionalities inside mechanical structures, it is necessary to de-
velop a real fully distributed set of transducers and to include them at the heart of composite
materials that is to say during the manufacturing process.
In this paper, a design approach based on engineering system theory is developed for fibers-
based composite structures including several piezoceramic transducers, electrically indepen-
dent. These structures are manufactured in our laboratory. Several characterization needs are
identified so as to well-design these complex structures. An experimental non-destructive pro-
cedure based on the analysis of anti-resonance and resonance frequencies of the transducers is
proposed for determining the initial material coefficients of interest. Moreover, an experimental
process is identified to obtain the global mechanical parameters of the fibers-based composites
we produced.
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1 INTRODUCTION

Currently, in different industrial fields as transport or aerospace, a research effort is lead con-
cerning structural weight lightening [1, 2]. One of the most promising solutions is the use of
composite structures [3] and, in particular, the fibers-based composite structures [4], due to their
high stiffness, their low mass density and their low damping factor. In the same time, there is
an intensification of the operational dynamic environment and an increase of durability require-
ments [5]. These different expectations seem to be contradictory. One way to manage this point
is to design and manufacture integrated smart composite structures. These structures have to
be able to modify their mechanical properties with respect to their environment (e.g. active vi-
bration control), to interact with other structures (e.g. mechatronic) or with human beings (e.g.
fatigue management).
To integrate new functionalities inside mechanical structures (in particular, for large structures)
for active vibration control, mechatronic, energy harvesting or fatigue management, it is nec-
essary to develop a real fully distributed set of transducers and to include them at the heart of
composite materials that is to say during the manufacturing process. To reach this goal, it is
absolutely necessary to limit the cost of the numerous transducing elements, the electric con-
nections or the control tests with respect to the global system cost and, in the same time, to
well-know the electromechanical behavior of the smart structure in order to well-design the
system controller. The classical approach using an identification process applied to the final
structures is not relevant for large distributed transducers networks or for mass production.
The paper is organized as follows. Section 2 gives the technical requirements to design and man-
ufacture adaptive composite structures. The core elements for all the smart structures are listed.
The specific requirements due to the approach selected are detailled. The design approach is
introduced in section 3. In section 4, the experimental characterization needs, essential for the
design step, are presented. Two set of results are given for the characterization of piezoceramics
and of an in-house glass fibers-based material. Finally, concluding remarks are discussed.

2 TECHNICAL REQUIREMENTS

2.1 Core elements

To design an adaptive mechanical structure, some elements are essential. First of all, trans-
ducers have to be implemented. Different physical principles can be used. In our laboratory,
the developments are based on the use of piezoelectric transducers. Their main advantage is
their large operating frequency range. It can be compatible with the automotive applications ([6
Hz 250 Hz]) or with the equipments for aircraft ([6 Hz 3000 Hz]). A controller and a control
strategy have to be selected. Basically, there are two main possible choices: a centralized con-
troller and a decentralized controller. In a centralized control strategy, one electric component is
designated as the master controller. It creates the actuators input signal by using the sensors sig-
nals and so it is responsible for managing the actuators. In a decentralized control strategy, the
paradigm is different. The sensor output signal is locally managed by a component and the con-
trol signal is only injected on the actuators close to this sensor. The local behavior modifications
allow to obtain an overall controlled behavior. A control electronics is also needed. Electrical
conductors are necessary to connect all the tranducers, electrically independent, with the control
electronics and the electric power supply. Of course, all the added elements have to allow the
manufacturing of planar or specific shaped structures with a limited thickness modification.

2
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2.2 Approach developed

Conventionally, the transducers, in particular the piezoelectric ones, are glued onto the structure
to be controlled and the electronics is located out of the structure. Our approach is significantly
different. We wish to design, build and optimize composite structures based on matter fibers
with a large distributed and integrated piezoceramic network. The idea is to protect the trans-
ducing elements and their electric connections and to industrially develop end products in plug-
and-play mode. Furthermore, the integration of transducing elements at the heart of the material
is the first step to develop, through the integration of micro and nano structures, programmable
or controllable matter.

To integrate these new functionalities at the heart of composite structures (in particular,
for large structures), it is necessary to develop a real fully distributed set of transducers and to
include them during the manufacturing process. To reach this goal, several major constraints
and manufacturing requirements were identified. It is necessary to:

• Electrically connect a large number of transducers so as to act on the whole structure.

• Make electrically-independent each transducer. This is a particular issue for the develop-
ment of carbon fibers-based composite structures which are naturally conductive.

• Limit the thickness variations due to the piezoelectric inclusions. These inclusions inside
the material will inevitably modify locally the thickness of the structure. This fact may be
limited by the use of thin piezoceramics (about 200 µm). However, the electric connection
by conventional welding is not possible because of the resulting overthickness. A special
connection technique was specifically developed.

• Achieve specific shaped structures (for instance, bi-concave structures) so as to adapt to
a wide range of applications (for instance, the vibration control of a car fender or the
vibration isolation of an aeronautical launcher cap).

To address these constraints and requirements, a manufacturing specific method has
been developed. In particular, this method uses the composite manufacturing features either by
infusion technique, used in particular to manufacture large structures, or by the RTM (Resin
Transfer Moulding) technique, used to manufacture mechanical parts with tight tolerances. Ex-
amples of structures manufactured in our laboratory with these processes are depicted in figures
1, 2, 3 and 4.

Figure 1: Beam manufactured with carbon fibers
including four piezoceramic transducers

Figure 2: Curved beam manufactured with glass
fibers including two PVDF transducers and two
MFC transducers

3 DESIGN APPROACH

The development of the manufacturing process is still ongoing. In parallel, a design approach
is also developed. Of course, the idea is to be able to design these complex structures that is

3
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Figure 3: Plate manufactured with glass fibers in-
cluding eight piezoceramic transducers

Figure 4: Kart center fairing manufactured with
vegetale fibers including nine piezoceramic trans-
ducers

to say to be able to predict the final behavior of the structure in a predesign step. For this, the
system engineering tools are exploited. First of all, the Product Breakdown Structure (PBS)
is built. A simplified version of this PBS is given in figure 5. The product is broken down in
sub-systems and in components. This process is iterative and is repeated for different depth lev-
els. This process is stopped when the components are indivisible, are commercial off-the-shelf
components or can be designed by only one development team in the project team. Once the
down tree obtained, it is necessary to establish the system architecture. The different elements
of the product tree are organized with respect to their interfaces. Thus, the interfaces between
the components are defined. The major issue of a complex system design is not the individ-
ual design of the components, in general managed by one project team. The major issue is to
design the components interacting with their environment and with the other components. To
summarize, the key point of a good complex system design is to manage and well-design the
interfaces between the components. Figure 6 is an example of a simplified sytem architecture
established for an adaptive composite structure.

Eléments 
conducteurs

Adaptive
Composite
Structure

Fibers Matrix Transducers

Figure 5. Simplified Product Breakdown Structure of an adaptive composite structure

Fibers

Matrix

Transducers
Electrical
conductors

Figure 6. Simplified system architecture of an adaptive composite structure (Interfaces management)
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4 EXPERIMENTAL CHARACTERIZATION NEEDS

Based on the design approach selected, it is possible to establish the essential experimental
characterizations. It is absolutely necessary to well-know the overall system behavior with the
integrated piezoceramic transducers so as to properly design the system controller. The classical
approach using an identification process applied to the final structures is a priori not relevant
for large distributed transducer arrays or for a mass production. Indeed, the idea is to avoid
uncertainty and costly and time-consuming works. Our approach is based on an experimental
approach upstream by predicting the overall physical parameters of the manufactured composite
structure. The system architecture is used to specify the experimental characterization needs and
so the procedures to be developed. Consequently, it is necessary to develop :

• a characterization method of the piezoceramics. In an industrial point of view, it corre-
sponds to an input control for the piezoceramics. A non-destructive process, based on
the vibration analysis of poles and zeros of the transducers, is developed and used for
obtaining the coupling coefficients of interest [6].

• a characterization method of the manufactured composite material. Once the manufac-
turing process stabilized, the composite must be fully characterized using a set of tests
allowing to have access to materials nominal parameters and their uncertainty. For this,
two major methods are exploited. The classical characterization process is based on the
use of material testing machines and strain gauges [7, 8]. Another vibration characteriza-
tion is also used : the resonalyser method [9, 10].

• a characterization method of the integrated piezoceramics. The idea is to be able to
produce a generic behavior modeling from the input control data so as to assess the drift of
material parameters and coupling coefficients, when integrating the piezoceramics inside
the material. Specific samples are manufactured. Piezoceramics, perfectly characterized,
are encapsulated in a composite structure with tight dimensions around the transducers.
The idea is to limit the effects due to the overall structure, the wires length, the electric
connections, the cross-talk ...Finally, the same process used as input control is applied to
these new samples.

• a characterization method of the electric interfaces. The electrical connection process,
in particular between the transducers and the electrical conductors, requires to assess the
influence of process parameters on the quality of electrical contacts.

• a characterization method of the cross-talk between the active elements. It is necessary to
evaluate the cross-talk between the transducers so as to establish dedicated design rules.
This feature depends on the wires distance and the electric connection technology used.

In the following subsections, the first methods are applied and the results obtained are
given.

4.1 Characterization method of the piezoceramics : Application to low-cost thin disks
made of piezoceramics

For this study, 40 low-cost piezoceramic samples are measured and analyzed. The material co-
efficients of these samples are calculated according to the experimental procedure presented in
[6].
In table 1, only the average material coefficients and their standard deviation are given. Let
the reader note that the mass density, ρ, is measured according to [11] (the minimum quantity

5
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Parameter Unit Nominal Standard
of interest value deviation (%)
2a mm 24.7 0
ρ Kg.m−3 7227 0
2b µm 135 5
εT33 F.m−1 1894 3.9
εS33 F.m−1 1195 6
kt - 0.17 6.2
k31 - 0.34 4.6
kp - 0.59 4.9
e33 C.m−2 5.00 6.5
e31 C.m−2 19.95 6
CE

11 N.m−1 1.01e11 1.4
CE

12 N.m−1 3.50e10 2.7
CE

33 N.m−1 8.19e10 5.2
σp - 0.34 2.8

Table 1. Parameters of interest from the measured data

doesn’t permit to compute a standard deviation) and the disk diameter has a very small devi-
ation probably due to the manufacturing process used. The measurements are completed by a
mechanical quality factor measurement for the radial mode vibrations with the 3-dB method
[11, 12]. The average mechanical quality is 49.4 with a standard deviation of 18.2 %. The
standard deviation values show a quite good manufacturing homogeneity despite of a low cost.
Let the reader remark a quite low planar coupling coefficient, kp and, globally, the coupling and
piezoelectric coefficients are quite limited. This fact has to be managed by the strategy used for
modifying the structure behavior.

4.2 Characterization method of the manufactured composite material : the resonalyser
method

The Resonalyser method is a material identification technique following a reverse engineering
scheme. Under in-plane stress assumptions, the in-plane elastic properties, given in equation
(1), can be determined by a dynamic modulus identification using the resonant frequencies
[9, 10]. Basically, this method uses resonance frequencies measured on rectangular plate speci-
mens, so-called Poisson test plates, and two beams samples so as to identify orthotropic material
properties. Moreover, an inverse technique is used to update the material properties in a numer-
ical model of the test plates and the beams. The main advantage of this method is the simple
apparatus necessary for the measurements and the simple numerical models used. ε11

ε22
γ12

 =

 1
E1

−ν12
E2

0

−ν21
E1

1
E2

0

0 0 1
G12

 σ11
σ22
τ12

 (1)

This method was applied to an in-house composite material made of glass fibers. The
structure has a 2 mm thickness. A fiber rate of around 35 % is obtained. A glass fiber mat
is used. Consequently, the final structure is transverse isotropic, that is to say E1 = E2 and
ν12 = ν21. The first results are given in table 2. The repeatability tests are ongoing so as to
produce the standard deviation. This part is particularly time-consuming. Let the reader note
that the classical formula for the isotropic materials, G = E

2(1+ν)
, is in good agreement with the

identified parameters.

6
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Parameter Unit Nominal Standard
of interest value deviation (%)
ρ Kg.m−3 1630 ?
E1 = E2 GPa 13 ?
ν12 = ν21 − 0.2 ?
G12 GPa 5.5 ?

Table 2: Parameters of interest from the measured data for an in-house glass fibers-based com-
posite material

5 CONCLUDING REMARKS

A design approach of fibers-based composite structures integrating transducers is detailled. The
experimental characterization needs are clearly expressed. Two examples of identified data of
interest are given for low cost piezoceramics and a glass fibers-based material manufactured in
our laboratory.
The next steps of this work are the development and the reliability of the different character-
ization processes. After this, all the obtained data will be combined to develop a predictive
behavioral model. The idea is to provide a pre-design tool for engineers.
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ABSTRACT 

 
For predicting vibratory responses of multi-layered panels over a wide frequency range (100-
10000 Hz), a new laminate theory has been developed. It overcomes the limit of classical zigzag 
laminate theory reached when panels start to undertake transverse resonant behavior. This theory 
mixes the three degrees of freedom (u0, v0, w0) of the thin orthotropic panel, statically equivalent 
to the layup assembly with the three “blocked” degrees of freedom (ui, vi, wi) of each layer, 
considered in relative motion to (u0, v0, w0). A panel made of N layers is thus described by 3(N+1) 
displacement variables coupled by a dynamic operator obtained by assembling plate, cylinder or 
doubly-curved shell thin orthotropic dynamical operators of individual layers depending on 
geometry. The real coupled operator is first analytically solved for all possible (m, n) quantic 
numbers to get eigenvalues and eigenmodes from which is derived the modal density of flexural, 
shear and extensional modes. In a second time, all material properties are made complex and the 
operator is solved again to predict the frequency band-averaged mean damping loss factor of the 
assembly from the complex eigenvalues. Examples of modeling aerospace sandwich or sandwich 
with thin viscoelastic core are discussed against related FEM models. This theory adds a new 
class of SEA subsystems to SEA+ software, extending its modeling capability in addition to the 
introduction of an “extended orthotropic” material described by frequency dependent elastic 
constants. 
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1 INTRODUCTION 

Thin multi-layered elastic shells are components of many industrial products from spacecraft with 
light honeycomb sandwich panels to car dashboards made of stamped viscoelastic steel sheets. 
Their equivalent damping properties are needed for controlling the accuracy of statistical Energy 
Analysis (SEA) prediction of their vibroacoustic behavior as well as their modal density. Due to 
limitation of the classical laminate theory in the high frequency range (HF), a new method has 
been developed for deriving the coupled equations of multilayered shells considered as an 
assembly of 2D thin layers. This theory has been implemented in the SEA+ software and is 
briefly exposed in this document with some validation results. 

2 DYNAMICAL DESCRIPTION OF INDIVIDUAL LAYERS  

In HF, each elastic layer will asymptotically oscillate on its uncoupled { }, ,k k ku v w displacement in 
respectively x, y and z axis, with (x, y) defining the plane of the layer. 
{ }, ,k k ku v w  are the local degrees of freedom of a layer k. The elastic behavior of layer neutral 
fiber is assumed to be orthotropic within (x, y) plane and defined by the following Eij matrix 
relating torque at neutral fiber to strains.  

0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0 ,

xxxx x x y

yyyy x y x

xyxy xy

zzzz z

z xy z zx zy

E E
E E

G
E

G

    
    
    
    =
    
    
          

εσ ν
εσ ν
γσ
εσ

σ γ γ

 
The two additional elastic parameters Ez and Gz are added for more flexibility in modeling 
complex design material. Cij coefficients are relating the corresponding forces applied to neutral 
fiber to displacement vector { }, ,k k ku v w  and its spatial derivatives by integrating previous stresses 
defined by Eij over the layer thickness. 
The dynamic of a single layer is then described by its local 3x3 dynamic stiffness operator which 
applies to { }, ,k k ku v w  with expression given here for a flat thin layer: 

 

( )4 4

" " "
11 ² 66 ² 12 66

" " "
12 66 66 ² 22 ²

(4) (4) (4)
11 22 12 66 ² ²

( ) 0
( ) 0

0 0 2 2

x y xy

k xy x y

x yx y

C C C C
L C C C C

D D D D

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂

 + +
 

= + + 
 + + + 

 (2.1)

 

3 DYNAMICAL DESCRIPTION OF GLOBAL LAYER 

When assembling the layers on top of each other, three complementary DoFs are added, 
{ }0 0 0, ,u v w  for describing the low frequency motion when all layers are vibrating in phase with 
no relative motion between them as shown in Figure 1. 

                 
Figure 1. Degree of freedom of the laminate assembly 
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This global layer is assumed to behave as the equivalent "static" shell with Cij elastic matrix 
calculated for phased translational and rotational motions of all layers. Given zk, the relative 
height of neutral fiber of a layer k vs z0, fiber height of layer 0, the actual displacement vector X of 
a layer k is expressed in the axis of global layer 0 as follows: 

0

0
0

0
0 /2 0

0

( , , ) ( , , ) ( )
( , , , )
( , , , ) ( , , ) ( ) ( , , ) ( ) ( )
( , , , )

( , , ) ( , , )

∂ ∂   − − −   ∂ ∂     
∂ ∂     = = − + − − − = +     ∂ ∂

      
   
      

k

k
k k

k
t k k t k k

k

w wu x y t z u x y t z z
x xu z x y t

w wX v z x y t v x y t z H z v x y t z z H z z X X
y y

w z x y t
w x y t w x y t

 

H is the Heaviside function, indicating the motion of each layer is limited to its thickness. 
Its dynamic stiffness is given by (2.1) using equivalent static Cij(k) coefficients. 

4 COUPLING SCHEME OF GLOBAL AND LOCAL LAYERS  

When excited by broadband random force, the layers will progressively decouple and will start to 
have relative motion between them. Assuming all layers will oscillate with common spatial phase 
function gψ , their vectorial motion is then given by: 

 

0 0( , ) ( ) j t

U
X V g x y z e

W

ωy
 
 =  
  

 

 

 (4.1) 

( )zψ  is assumed continuous along transverse section with continuity of displacement at layer 

interface but its derivative 
z
ψ∂
∂

 is discontinuous. 
z
ψ∂
∂

 is a distribution with derivative jumps kθ  at 

layer interfaces. 

z
ψ∂
∂

 may then be expressed as: 

( , )( ( ) ( , ,k k k
k

x y z z x y z
z z
yy θ δ∂ ∂ = − +  ∂ ∂ 

∑  

{ }  means 
z
ψ∂
∂

 is continuous outside discontinuity interval.  

Derivative jump is then estimated by 1
( 1)

1

( ) ( )k k
k k

k k

z z
z z

ψ ψθ −
−

−

−
=

−
 which means interlayer forces will 

be proportional to the difference of their ( )kzψ  motion amplitude. 
The general coupling scheme of global and local layer is sketched in Figure 2 as a generalized 
mass-spring dynamic system where X are vectors with components { }, ,u v w  and stiffness terms 

are 3x3 dynamic operators. As well as mass operator, kL  is the dynamic operator of a layer k 
coupled through springs to global layer described by 0L . To write down the coupled equations of 
the system, we have to provide expression of the coupled springs between global and local layers 
and between local layers. 
The spring operator 0kL  represents the various elastic forces connecting local and global layers.  

0kL  is split into two additive terms: first term 0( , )k x yL  is calculated from the strain energy due to 

the joint work of their respective dynamic operators kL  and 0L . Effectively, a k-layer when 
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moving is developing work within the stress field generated by . The work  is thus 

computed from  representing the relative work of all motions 

. Second term  corresponds to work induced by complementary stresses generated by 
strain and not accounted in the work related to . They are introduced as 

complementary stiffness matrix added to  as the two types of stresses are acting in parallel. 

 
Figure 2. The global-to-local coupling scheme 

The coupling between two adjacent layers k and k-1 is described by the matrix  of which 
components are springs acting on the various layer motions. For example, along z-axis, layers 
may be compressed with a related interface stress . Assuming a continuous linear compression 
strain at interfaces A and B, potential energy is given by:  

 

If the stiffness is calculated between the respective neutral fibers of two adjacent layers, it 
may be calculated following: 

 

The parameter β is depending on chosen  function,  being defined as a stiffness per 

unit m², proportional to .  

 
Figure 3. Left: Sketch for z-stiffness term derivation of Kzz impedance - Right: the four coupling 

impedances introduced in the laminate model 
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Similarly, there are shear forces at interfaces when rotation 
z
ψ∂
∂

 is non-zero. Four different 

springs, Kzz, Kxy, Kxyz and Kws are then acting in the motion Xk when all other layers are blocked at 
their neutral fibers.  

Kxy is the shear spring due to rotation 
z
ψ∂
∂

 and calculated as: 

( 1) ( )

( 1) ( )

k k
xy xy

xy k k
xy xy

K K
K

K K

−

−=
+

 with k zz
xz

GK
t

β
=  

The related force applied in the plane (x, y) is given by: 

( )1xy xy k kF K u u −= − −
 

xyF  corresponds to the stress zxσ  or zyσ  and sketched as force ( 1)xz k kS − in next figure. 

 
Kxyz and Kws are respectively due to moment generated by xyF when motion is expressed at neutral 
fiber. The second derivative of this moment gives two shear forces in the transverse section (x, z) 
and (y, z) which opposes to inertial force and act of w components and due to the moment of xyF  
and the moment exerted by the rotation of the section of layer k (Kws stiffness). A last stiffness 

term is introduced. This stiffness is due to differential rotation 1k kw w
x x

−∂ ∂ − ∂ ∂ 
 inducing shear 

stress in (x, z) and (y, z) transverse planes, acting on w’s components of motion. 

5 SOLVING THE DYNAMICAL MATRIX  

From previously defined set of interacting forces, the coupled equations of the multilayered 
motion are reduced to a set of linear relationships given in matrix form (given for two layers 
herbelow): 

 

ω
+ + − −   

   − + + − + =   
   − − + +   

0 10 20 10 20 0
2

10 1 10 12 12 1

20 12 2 20 12 2

X 0
L L L L L X

L L L L L X
L L L L L X

M  (5.1) 

Equations are next expressed in function of the relative local motion of layers k, δ kX . 
Given 0k kX X Xδ = − , (5.1) becomes: 

 

δ ω δ
δ δ

− −     
     + + − + =     
     − + +     

M
0 10 20 0 0

2
1 1 10 12 12 1 1

2 12 2 20 12 2 2

0
L L L X X
L L L L L X X
L L L L L X X

 (5.2) 

This matrix makes the dynamic problem easier to solve as the high-valued terms on the diagonal 
of 0L  are removed leading to more stability in the LF range where 0L  operator is predominant.  
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In relative motion, the mass matrix is non-diagonal and is given by: 

 
 
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 
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To get a fast analytical solution, displacements in the (x, y) plane are constrained to some global 
shape compatible with boundary conditions such as: 

( , ) sin sin
x y

m x n yg x y
L L
π π

=  in case of simply supported edges. 

When applying the differential operators to ( , )g x y , L and M matrices are becoming functions of 
quantic m and n numbers. For each pair (m, n), an eigenvalue problem is solved, leading, for N 
assembled layers, to a system of 3x(N+1) eigenvalues, imnλ . After extraction, imnλ  are sorted into 
extensional, shear and bending categories by analyzing the relative importance of eigenvector 
amplitudes in each u, v, w directions.  
Finally, the band-averaged modal density and the band-averaged wavenumber are estimated from 
the set of all discrete imnλ  up to some maximal m, n orders limited by the upper frequency of 
calculation.  
The model is made more general by introducing frequency-dependent elastic parameters using 
SEA+ Extended Material definition.  
The full dynamic matrix is then solved twice, the first solve giving the primary solution frequency 
and the second solve providing the final frequency after interpolating elastic matrix at primary 
solution frequency.  
Modal damping loss factor (DLF) is estimated by transforming L  matrix into a complex matrix 
L  using complex Cij matrix of which component related to each layer k are given by:  

( )1k k kCij j Cijη= +  

with kη  the local material damping associated to each layer. 
The mean DLF of the assembly is finally delivered in integrated band format of width ω∆  and 
central frequency cω : 

{ } { }1( ) Im / ReT T
c i i i i

i i
X X X X

Nω
ω

η ω
∆

∆

 =  
 
∑ ∑L L  

where N ω∆  is the number of eigenvalues retained in ω∆  and iX  eigenvector related to imnλ . 

6 APPLICATION TO VARIOUS SYSTEMS 

6.1 Consistency of the formulation 

The self-consistency of the formulation is checked against the calculation of an arbitrary isotropic 
thin plate of uniform material but decomposed into different number of layers for unchanged total 
thickness. A 1 m x 1 m uniform plate of 4-mm aluminum thickness is then modeled as SEA+ 
dynamic laminate plate with selected thickness distribution defined in next table. 
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Case Type #Layer t1 (mm) t2 (mm) t3 (mm) t4 (mm) t5 (mm) Total t mm
P0 uniform 1 4 4
P1 Laminate 1 4 4
P2 Laminate 2 2 2 4
P3 Laminate 3 1 0.5 2.5 4
P4 Laminate 4 1 1 1 1 4
P5 Laminate 5 1.5 1 0.25 1 0.25 4  

Table 1. Consistency test of the formulation modeling same plate with different dynamic laminate 
settings (P0 is the reference plate result modeled as 4-mm uniform SEA+ plate) 

Figure 4 shows all models are given same eigenfrequencies, modal density and mass except 
out of resonances where modal density is interpolated differently between uniform and 
laminate modeling.  

  
Figure 4. Left: modal density of 4mm-Al plate modeled as uniform and as dynamic laminate with 

different thickness distributions - Right: related mass of all plates 

6.2 Aerospace sandwich flat plate structure 

Case C1 is a 1 x 1 m² flat plate made of sandwich construction with two 1-mm aluminum skins 
and 10-mm NIDA core with G = 200 MPa, E = 3MPa and cρ  = 60 kg/m3.  
SEA+ calculation is compared with three FEM simulations with NASTRAN NX solver.  

• C1 "PSOLID1" FEM model, skins are modeled using 2D-plate elements and glued to the 
core meshed with 3D-PSOLID elastic elements. PSOLID1 is simply-supported on edge of 
only one skin. 

• C1 "PSOLID2" FEM model, same model than PSOLID1 but simply-supported on edges of 
the two skins.  

• C1 "PCOMP" FEM model, both skins and core are modeled with 2D PCOMP plate 
laminate elements within a single 2D-plate and with simply-supported edges. 

Real eigenmodes are extracted from FEM models by NASTRAN NX SOL103 solver and 
imported in SEA+ Virtual SEA solver [1] [2] [3] [4] to calculate related SEA parameters: modal 
density, wavenumber and mean input mobility. They are then compared to corresponding SEA+ 
Dynamic Laminate outputs. Figure 5 and Figure 6 show good agreement between SEA and both 
PCOMP and PSOLID FEM models for modal density and conductance (real part of driving point 
mobility). Mid to high frequency slopes of both flexural modal density and mobility spectra due 
to core shear are well-reproduced by SEA+ model. Shifting from PCOMP to PSOLID FEM 
models increases the first resonance frequencies provided by PCOMP. This is observed in the two 
selected boundary conditions: constraining one skin, then, two skins to simply-supported on edge, 
demonstrating the difficulty in predicting deterministic resonance frequencies even on simple 
systems. 
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Figure 5. Case C1-Comparisons of (Left) Model density and (Right) conductance using SEA+ 
Dynamic Laminate (red), PCOMP NASTRAN (dashed green) and SEA+ uniform equivalent 

static plate (dot blue) 

 
Figure 6. Case C1 - Comparisons of (Left) Model density and (Right) conductance using SEA+ 

Dynamic Laminate (red) and PSOLID 1 & 2 NASTRAN  

6.3 Aerospace sandwich singly-curved structure 

Case C2 is a quarter of cylinder in same sandwich than C1. Radius and length are set to 1 m. 
Again a very good agreement is found between FEM and SEA+ calculation (see Figure 7, Modal 
density comparison with PSOLID2 model). 

 
Figure 7. Case C2 - Comparisons of SEA+ and NASTRAN PSOLID2 Model density for a quarter 

of simply-supported cylinder 

6.4 Sandwich steel plate with viscoelastic insertion 

Case C3 is also a 3-layered steel panel with very thin film of viscoelastic material bonding 
together two thin steel plates. A sample from ThyssenKrupp manufacturer was measured to 
compare with SEA+ simulation. Characteristic used in the modeling are reported in next Table 1.  

 
Table 2. Characteristic of tested samples 
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Core material intrinsic DLF is taken equal to 1. Skin DLF are fixed arbitrarily to 0.01.  
Regarding measured data, a set of complex frequency transfer inertances were recorded under 
impact hammer using InterAC SEA-XP data Acquisition system. Driving point inertances are 
converted into conductance per 1/3rd octave band. Reverberation time on free-free panels is also 
analyzed and converted into DLF.  
In Figure 8 are reported calculated flexural input conductances for both SEA+ and FEM (here 
PCOMP model result) and measurement. SEA+ modal density and conductances are also found 
in good agreement with PCOMP, PSOLID and measurement results. Prediction of DLF is also 
satisfactory compared to measurement as the impact pulse is very short with low modal density 
below 1000 Hz. Nevertheless, both Power Injected Method (PIM) and Reverberation time are 
leading to same measured DLF values in the range 200-2000 Hz. 

 
Figure 8. Case C3 - Viscoelastic steel sandwich - Left: SEA+ Laminate and NASTRAN PSOLID 
conductances compared to measurement - Right: SEA+ DLF laminate calculation compared to 

measurement through injected power 

6.5 Multilayered window 

Case C4 is a window made of five layers. Layers are 8mm-Glass, 9.6mm-PU (Polyurethane), 
8mm-Glass, 2mm-PVB (Polyvinyl Butyral) and 3mm-Glass. Window size is 0.76m x 1m. Modal 
density of corresponding SEA+ laminate model is checked against measured and calculated data 
in Figure 9 (left). Measured modal density is obtained from FRF measurements performed 
directly on the built-up window with hammer impact. Measured modal density is obtained from 
the relationship 4N mY= , with m the window mass and Y the real part of driving point FRF. The 
comparative calculated modal density is extracted from NASTRAN NX FEM model of the 
window built with PSOLID elements. There is good convergence between the three results taking 
note that actual window was connected to the mounting frame during the measurement, 
explaining observed difference at low frequencies between measured and calculated modal 
densities. 

 

Figure 9. Case C4 - Multilayered window - Left: SEA+ and NASTRAN FEM calculated modal 
density compared with experimental modal density and Right: calculated DLF compared with 

RTIR and PIM measurements 
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Predicted SEA+ DLF is compared to measured DLF in Figure 9 (right).  
Measured DLF is identified in two different ways by Reverberation Time of window Impulse 
Response (RTIR) and by Power Injected Method (PIM) using SEA-TEST software. 

7 CONCLUSIONS 

The SEA+ Dynamic Laminate model is based on a new theory which provides fast calculation 
of SEA parameters. This theory is reducing the 3D dynamic of a multi-layered thin shell to 
the assembly of series of thin orthotropic layers, each layer being described by a single 
material and by its asymptotic uncoupled dynamic stiffness. Along transverse direction, the 
strain shape motion is assumed to behave as static with continuous displacement and rotation 
and discontinuous second z-derivative at layer interfaces. This theory is then a specific 
instance of the Zig-Zag theory using local asymptotic motions of individual layers in place of 
the classical Taylor’s series decomposition of the global motion for projecting the actual 
motion. Dynamic Laminate theory has been extended from plate to singly-curved and doubly-
curved systems and released in SEA+ 2015. Comparative calculations with FEM models and 
with measurements have shown good convergence in all tested configurations which were 
requiring specific SEA model, now all covered by the Dynamic Laminate construction. 
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Jordan, CNRS-UMR-5208
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ABSTRACT

The aim of this work is an analysis of a geometric inverse problem related to the identification
of defaults, namely cavities in structures. The approach proposed in treating such problem
is to transform it into a shape optimization one by the means of an error functional that can
be interpreted as a constitutive law misfit functional. Moreover, this cost functional whose
shape derivative is explicitly determined allows the implementation of a numerical minimization
algorithm using the gradient information combined with the level set method. The efficiency of
the proposed approach is highlighted by numerical results.
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1 INTRODUCTION

Throughout this paper, we consider a bounded domain B ⊂ R2 with boundary Υ, occupied
by a linear elastic material and we assume that there exists a cavity, namely a bounded domain
A ⊂ B with boundary Γ. Let us denote by Ω the domain B \ A. The forward linear elastic
problem is therefore given by

divσ (u) = 0 in Ω,
σ (u) = λ tr ε (u) I + 2µ ε (u) in Ω,
σ (u) n = 0 on Γ,
σ (u) nΥ = g on Υ,

(1)

where u is the displacement, σ(u) is the associated stress tensor, ε(u) is the linearized strain
tensor given by ε(u) = 1

2

(
∇u+∇uT

)
. nΥ and n are the outward unit normals to the boundary

of Ω. The geometric inverse problem under consideration consists so in recovering the cavity
A, namely the unknown shape Γ by applying some prescribed load g on Υ and measuring the
induced displacement on the same part Υ, i.e{

u = f on Υ,
σ (u) nΥ = g on Υ.

For a given Ω, let uD and uN be the solutions of the following Dirichlet, respectively Neumann
problem 

divσ(uD) = 0 in Ω,
σ(uD) = λ tr ε (uD) I + 2µ ε (uD) in Ω,
σ(uD)n = 0 on Γ,
uD = f on Υ,

(2)

respectively 
divσ(uN) = 0 in Ω,
σ(uN) = λ tr ε (uN) I + 2µ ε (uN) in Ω,
σ(uN)n = 0 on Γ,
σ(uN)nΥ = g on Υ.

(3)

Thus, the cavities identification problem can be formulated as a shape optimization one (see
[1, 2, 4]) as follows Find Ω such that

J(Ω) = min
Ω̃⊂B

J(Ω̃), (4)

using the constitutive law misfit functional

J(Ω) :=
1

2

∫
Ω

(σ(uD)− σ(uN)) : (ε(uD)− ε(uN)). (5)

The main contribution of the present work relies on the use of the error functional (5) that can
be interpreted as an energetic least-squares one.

2 SHAPE DERIVATIVE

We consider a hold-all domain U ⊃ Ω and construct a family of perturbations Ft as follows

Ft = id+ th,

2
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where h is a deformation field belonging to the space

Q = {h ∈ C1,1(U)2; h = 0 on Υ}

and t is sufficiently small such that Ft is a diffeomorphism from Ω onto its image. The family
of domains {Ωt} respectively {Γt} are then defined by Ωt := Ft(Ω) respectively Γt := Ft(Γ).
The condition h|Υ = 0 means that the boundary Υ is a part of the boundary of Ωt.

Definition 1 The Eulerian derivative of the functional J at Ω in the direction of an element
h ∈ Q is defined by the quantity, when it exists

J ′(Ω, h) = lim
t7→0

J(Ωt)− J(Ω)

t
.

The Eulerian derivative is called shape derivative if J ′(Ω, h) exists for all h ∈ Q and the
mapping h 7→ J ′(Ω, h) is linear and continuous with respect to the topology of C1,1(Ω)2.

Theorem 1 The mapping t 7→ J(Ωt) is C1 in a neighborhood of 0 and its derivative at 0 is
given by

J ′ (Ω, h) =

∫
Γ

G (h · n) ,

with
G =

1

2
[(σ(uD) : ε(uD))− (σ(uN) : ε(uN))] . (6)

3 NUMERICAL RESULTS

An iterative method is proposed to solve the shape optimization problem (4). The last theorem
allows to choose like a descent direction of the functional J

h ∈ Q such that h|Γ = −Gn,

where G is given by (6). To numerically implement this iterative process, we use the level set
method [3].

3.1 First case

As a first test, we consider Υ = {x; |x| = 0.9}. The solution is the circle centered at the
origin with radius equal to 0.35. The convergence is obtained after 17 iterations as it is shown
in Figure 1.

Figure 1: Υ the exterior boundary (the dashed green line), Γ the exact solution (the black line),
evolution of the boundary Γk (the red line) for k = 0, 10, 14, 17 (left to right).

3
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3.2 Second case

In this second case, the cavity to recover is a connected domain, namely the disc of radius equal
to 0.3 centered at the origin. However, we consider a disconnected initial guess. Indeed, Γ0 is
the union of the three disjointed circles of radius R equal respectively to 0.14, 0.17 and 0.14
(left to right), centered respectively at (−0.4, 0), (0, 0) and (0.4, 0) as it is shown in Figure 2.
The convergence is obtained after 9 iterations.

Figure 2: Topology change test: Υ the exterior boundary (the dashed green line), Γ the exact
solution (the black line), evolution of the boundary Γk (the red line) for k = 0, 1, 3, 9 (left to
right).

4 CONCLUSION

In this work, a cavities identification problem in linear elasticity was transformed to a shape
optimization one by the means of a Dirichlet-Neumann misfit functional. To solve this prob-
lem, we made use theoretically of the shape derivative concept and numerically of the level set
method. The numerical tests illustrated the efficiency of the proposed approach.
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ABSTRACT

Elastomers show significant dependence on prestrain and frequency when they are loaded with
large static predeformation superimposed by harmonic small amplitude dynamic excitations. In
order to investigate these dependencies, quasi statics and dynamic experiments were carried out.
Based on the  experimental  facts,  we examined  the  capacity  of  the  Simo viscoelastic  model
implemented in the FEA software Abaqus to simulate experimental data with good accuracy. The
formulation is in the frequency domain. Therefore, the constitutive equations are linearized in the
neighborhood of a predeformed configuration, with the assumption that the linear expression of
stress governs the new configuration. Hence, the experimental data at different prestrain levels
are compared to the simulation results.

Keywords: elastomers, dynamic material behavior, frequency-dependence, prestrain-dependence,
abaqus frequency domain viscoelasticity.
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1 INTRODUCTION

Because of their remarkable dissipative properties, elastomers are widely used as damping
components in industry. Indeed, they can undergo severe mechanical loading conditions. The
load-case of large static predeformation superimposed by small amplitude dynamic excitations
can be found in many applications. Experimental investigations of rubber materials show lots of
non linear effects. In order to design industrial components, it is of major importance to measure
the sensitivity of the dynamic response to the influencing parameters, and be able to predict the
impact of those effects on the products.

In the present paper, we examine the capacity of the Simo viscoelastic model implemented
in Abaqus software to simulate experimental data with good accuracy, and with respect to the
frequency and predeformation-dependence. Hence, the frequency domain viscoelastic model in
Abaqus is explored. The input requirement of the model from dynamic tests at several frequencies
is  detailed.  The model  assumes that  the  input  requirement  to  Abaqus is  independent  of  the
prestrain in the data. This assumption is examined for a filled rubber material. The material model
is used to predict component level response in simulations performed at different prestrain levels
for  several  frequencies.  Experimental  data  at  different  prestrain  levels  are  compared  to  the
simulation results.

2 EXPERIMENTAL RESULTS

2.1 Static experiments

The experimental investigations are focused on the prestrain and frequency-dependent
behaviour  of a filled rubber. For this  aim,  some quasi-static experiments  are carried out.  To
exclude the Mullins effect, which is known as a stress softening of virgin material in the first
loading cycles [1], the specimens are preconditioned before testing. Monotonic tests were carried
out with an Instron Table Model Testing Machine (model 3345). All tests were performed at room
temperature under displacement control, and under the assumption of homogeneous deformations.
Tensile tests were performed on H2 specimens. Shear tests were performed on quad-shear test
simples [2]. Focusing on the equilibrium stress response, we make use of multistep experiments at
different strains with holding time of ten minutes. The resulting stress responses are shown in
Figure 1.

Figure1. Monotonic tests, loading conditions , equilibrium and non equilibrium stress
response

2
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2.2 Dynamic experiments

In this section, we discuss experimental observations on shear specimens. The specimens
consist on an assembly of 3 stainless steel cylinders with 10 mm of diameter and 10 mm of length
between which 2 rubber inserts, of about 2.4 mm thickness and indented from a rubber sheet
furnished by the manufacturer, are glued. Dynamic properties were investigated by mean of a
Metravib DMA 50N.
The experimental procedure consists in superimposing simple shear prestrain and a sinusoidal
strain as:

ε (t )=ε 0+εa sin (ωt )              (1)
were  ε0 denotes  the  prestrain,  ε0 denotes  the  strain  amplitude,  and ω is  the  angular

frequency.
To consider the frequency-dependent materials behavior, frequency sweeps test with stepwise
changing frequency from 0.1 Hz up to 40 Hz at constant predeformation and constant dynamic
strain amplitude are used.  In order to evaluate  the materials  response over a wide range of
frequency, we used temperature-frequency shifting techniques and generate mastercurves [3][4].
Therefore,  we have  to  investigate  the temperature-dependence  of  the material  behavior. The
measuring temperature is varied between -100 °C and 100 °C and the reference temperature for
the shifting process is set to 23.3 °C. On the basis of these conditions, we were able to shift the
measured curves on the logarithmically scaled frequency axis.

The results were evaluated in terms of the shear storage modulus and the shear loss factor. The
storage modulus determines that part of stress response which is in phase with the strain. The loss
modulus that part of stress response which is in phase with the strain rate. The loss factor is the
quotient of the loss modulus by the storage modulus. Figure 2 exhibits the frequency-dependent
material behavior. The experimental data shows that the storage modulus increases significantly
with increasing frequency. In comparison with this, the loss factor shows a broad maximum in the
region of  1  e+04Hz. In the region of  lower or  higher  frequencies,  this  factor  is  significantly
lowermost. Hence, the loss modulus increases with increasing frequency.

Figure 2. Material's frequency-dependent behavior , shear storage and loss factor

As mentioned before,  and in  order to  determine  the influence  of the static  prestrain on the
dynamic materials behavior, frequency sweeps at different levels of static preload were carried

3
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out. The experimental curves show that increasing the static prestrain leads to a lower storage
modulus and loss factor. Greater prestrain leads to a lower softening in term of shear storage
modulus (Figure 3), the decrease between 0% of prestrain and 10% of prestrain is greater than that
between 20% of prestrain and 30% of prestrain. Figure 4 exhibits the same phenomena for the
loss factor. Therefore, the softening of the material is non linear.

Figure 3. Shear storage modulus at different frequencies and prestrain levels

Figure 4. Loss factor at different frequencies and prestrain levels

4
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3 FINITE ELEMENT ANALYSIS IN THE FREQUENCY DOMAIN

3.1 Abaqus FEA finite viscoelasticity model

 We call  F  the deformation gradient it is defined as  F=
∂X
∂ x

 where  x is the

coordinate in the current configuration at X  in the reference configuration. We call J  its
determinant J=det F . When a solid is incompressible, every deformation is isochoric, so that:
J=1 .

The  Abaqus  FEA  model  is  reminiscent  of  the  Simo  model  [5].  The  finite-strain
viscoelasticity theory implemented in Abaqus is a time domain generalization of the hyperelastic
constitutive  model.  Section  4.8.2  of  the  Abaqus  Theory  Manual  version  6.13  [6] gives  the
following constitutive relations to model nonlinear viscoelastic effects :

σ (t )=σ0
D
(t)+dev [∫

0

t

Ġ(s)Ft
−1

(t−s)σ0
D
(t−s )Ft

−T
(t−s)ds]−p I (2)

where  dev ( .)=( .)−
1
3
( .): I is  the  deviatoric  part  of  the  bracketed  term and σ0

D  is  the

instantaneous deviatoric Cauchy stress response (elastic response at very short times).
This constitutive relation is for incompressible solids. −p I  is the hydrostatic term, and p
is a Lagrange multiplier.
The  time  dependent  shear  relaxation  function  G(t) is  defined  in  terms  of  a  series  of
exponentials known as the Prony series as:

G(t)=G∞+∑
i=1

n

Gi e
−t
τi              (3)

where G∞ represents the long term shear modulus, Gi and τ i are material constants.
Using Fourier transforms, the expression for the time dependent shear modulus can be written in
the frequency domain as follows:

Gs(ω)=G0(1−∑
0

n

gi)+G0∑
0

n gi τi
2
ω

2

1+τ i
2
ω

2 (4)

Gl(ω)=G0∑
0

n gi τ iω

1+ τi
2
ω

2 (5)

where Gs(ω) is the shear storage modulus, Gl(ω) is the shear loss modulus and ω is the
angular frequency. gi  are dimensionless shear relaxation constants and are as:

gi=
Gi

G0

(6)

The frequency domain  viscoelasticity  model  in  Abaqus is  defined for  a  kinematically  small
perturbation about a predeformed state. The procedure consists on a linearised vibration solution
associated  with  a  long-term  hyperelastic  material  behavior. This  assumes  that  the  linear

5
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expression for the shear stress still governs the system except that the long-term shear modulus
G∞ depends on the amount of the static prestrain γ0  as:

G∞=G∞(γ0) (7)
Hence, this implies that the frequency-dependent part of the material's response is not affected by
the static prestrain level.

3.2 Simulation results

In this section, the frequency domain viscoelastic model defined with the Abaqus step
“Direct-solution steady-state dynamic analysis” [7] is studied in order to examine the capacity of
the Simo viscoelastic model to simulate experimental data with good accuracy and with attention
to frequency and prestrain dependences.
Harmonic  excitation  data  at  different  prestrain and frequency levels  are  available.  This  data
contains loss and storage modulus information. Long-term uniaxial data was used to calibrate an
hyperelastic material model.

The simulation results for the equilibrium stress response are shown in  Figure5. They reveal a
very good matching between the experimental data and the simulated data for both uniaxial
tension and pure shear tests.

Figure 5. Experimental and simulated data for uniaxial and pure shear tests

With respect to the assumption of linearized vibration about prestrained configuration mentioned
previously, harmonic data were introduced in the undeformed state. Hence, a small amplitude
dynamic excitation was superimposed to a simulation of the nonlinear base state. Simulation
results are graphically shown in Figure 6 and Figure 7. The frequency-dependent  behavior is
pronounced. Therefore, the results for the dynamic material response with respect to the prestrain-
dependency are not accurate:  the strain and frequency effects  are  separated.  Thus,  the basic

6
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assumption for the frequency domain viscoelasticity used in Abaqus is not reasonable for our
investigated filled rubber.

Figure 6. Experimental and simulated shear storage modulus 
at different frequencies and prestrain levels

Figure 7. Experimental and simulated loss factor 
at different frequencies and prestrain levels

7
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CONCLUSION

The experimental investigations of a filled rubber revealed a significant dependence on
frequency and prestrain level. The frequency domain viscoelasticity in the FEA software Abaqus
is used to simulate those dependencies and reproduce experimental results. This approach is based
on  the  assumption  of  linearized harmonic  excitation  about  a  base  state.  Simulation  results
compared to experimental curves show that the frequency-dependent behavior is pronounced, but
not  the  prestrain  dependence.  Thus,  the  strain  and  frequency  effects  are  separated  and  the
mentioned assumption above is non reasonable for the filled rubber material investigated in this
paper.
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ABSTRACT 
 

Elastomers are widely used in aerospace, automotive and civil engineering applications 

thanks to their ability to undergoing high strains in large temperature range. To study the 

nonlinearities, several models have been developed in the literature. In this work, a nonlinear 

viscoelastic model at finite strain is developed based upon functional and internal variable 

approaches and the time strain superposition principle (TSSP). Constitutive equations for the 

stress are derived such that the second law of thermodynamic, in the form of Clausius-Duhem 

inequality, is satisfied. Identification of several model’ parameters is studied using 

experimental data of pure shear, simple extension tests on a natural rubber NR and a least 

square minimization procedure. 

 

Keywords: nonlinear viscoelasticity, finite strain, time-strain superposition principle, 

identification, discretization of constitutive equations. 
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1 INTRODUCTION 

Viscoelastic materials, such as elastomers, are well known by their nonlinear time dependent 

behaviour and large deformation. In the literature, two main approaches are used to determine 

constitutive equations for these materials: functional approach and internal variables 

approach. 

The first one consists on expressing the free energy density as a multiple integral 

functional in terms of the history of deformation (Christensen [1] Pipkin [2]), and then the 

stress tensor is derived from this functional with respect to the strain tensor, taking into 

account the whole thermodynamic assumptions. Whereas, the second one consists on 

expressing the free energy density as a Taylor series in terms of the strain tensor and a set of 

internal variables (second order tensor akin to the second Piola-Kirchhoff stress tensor Simo 

[3] Govindjee [5] or the right Cauchy-Green strain tensor Holzapfel [4] Valanis [6] Schapery 

[7]). The viscoelastic behavior is described with a linear rate equation governing the set of 

internal variables and the thermodynamic restrictions are expressed by the Clausius-Duhem 

inequality. 

 

In this study, a model is developed for nonlinear viscoelastic materials undergoing large 

mechanical process. As a first step, a rheological motivation is investigated. Then, the 

nonlinear viscoelastic model is introduced using a formulation based upon both functional and 

internal variables approaches and the time strain superposition principle TSSP (reduced time). 

Constitutive equations for stress and dissipation are then derived from the thermodynamic 

principles. Finally, an identification procedure of several model parameters is highlighted 

using pure shear and simple extension tests on a natural rubber material (NR). 

2 NONLINEAR VISCOELASTIC MODEL 

2.1 Rheological model 

 

The use of rheological models to describe the mechanical behavior of several materials is very 

widespread. The advantage of such model is its simplicity to obtain the constitutive equations 

of a material. It consists on associating elementary rheological models, namely a Hookean 

element (spring) and a Newtonian fluid element (dashpot). This association could be in series 

and/or in parallel.  

The aim of this section is to develop the viscoelastic model proposed by Simo [3] using 

a rheological model of Zener. For that, we shall investigate some assumptions in the 

definition of internal variables. The viscoelastic model is developed using the concept of 

internal variables; the stress is used as an internal variables and denoted Q . 
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Figure-1: Zener rheological model 

In the rheological model, (figure 1), E  is the spring constant of the Maxwell branch,   

is its dashpot viscosity coefficient and E  is the constant of the spring related to the 

equilibrium state   and   are the total deformation and the stress respectively. The 

deformation of the dashpot of the Maxwell branch is denoted  and the free energy density is 

denoted  . Note that this model is governed by the following equations: 

 

  E E       (1) 

  E     (2) 

  
221 1

2 2
E E Q

E
      (3) 

 
1 oQ Q



  


 


 (4) 

In Equations (2) and (4) the dot (.) denotes the derivative of this variable with respect to 

time. Note that oE E   is a positive constant, oE  is the instantaneous modulus of the 

material model and E   is the relaxation time constant. The instantaneous potential 

mentioned in equation (4) is the instantaneous elastic energy defined as: 

 21

2
o oE   (5) 

Considering equations (1), (2), (3), (4) and (5), one can obtain the expression of the 

Cauchy stress: 

  
0

1 exp
t

ot t
dt


  

 

    
     

  
  (6) 

2.2 Nonlinear viscoelastic model with reduced time 

 

The concept of reduced time was introduced essentially to describe thermorheologically 

simple materials’ behavior. For such materials, their behaviors are affected by the history of 

temperature via a single scalar-valued function called temperature shift function [8] [9]. This 

concept was generalized to investigate thermorheologically complex materials’ behavior by a 

temperature and stress/ strain dependant shift function (Schapery [10], Matsuoka [11] and 

McKenna [12]).  

In what follows a viscoelastic model with reduced time is proposed. 
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The free energy density proposed by Simo [3] is considered. Remember that the 

author postulated a free energy as a Taylor series of the right Cauchy-Green strain tensor and 

an internal variable Q : overstress or non-equilibrium stress (theory of thermodynamic 

internal variables). Simo [3] proposed an evolution law of this variable. Our approach consists 

on resolving this law in order to obtain the expression of the internal variable as an integral of 

the history of deformation/ stress, and then we replace the variable Q  by its expression in the 

energy. So, we obtain a free energy density in a functional form, then we follow the approach 

of Christensen [1] to derive constitutive equations. 

 

The evolution law of the internal variable, the free energy and the reduced time 

function are postulated as follow: 

 
 1

2
o

dQ C
Q

d C



  

 
  

  

 (7) 

  
 0

t dt
t

a C



   (8) 

  
1 1

: :
2 4

o

o

C Q C Q Q
 

     (9) 

In equation (9) o  denotes the initial shear modulus of the material. Considering these 

equations and using the methodology, described above, one can obtain the constitutive 

equation of the second Piola-kirchhoff stress tensor: 

 

  
 

0
2

o C
S G d

C

 
  



 
    

  
 

  (10) 

 G t  is a time dependant exponential decay function, known as the relaxation function. 

The equation of this material characteristic function can be expressed as: 

 

   expi

i i

t
G t  




 
   

 
  (11) 

3 IDENTIFICATION 

The aim of this section is to present the identification procedure of the hyperelastic potential, the 

relaxation function and the reduced time function. 

3.1 Identification of hyperelastic potential and relaxation function 

The identification of the hyperelastic potential  o C  and the relaxation function  G t  equation 

(11) is provided using ABAQUS software and simple extension tests at equilibrium state; i.e. low 

strain rates and relaxation at different levels of deformation. In figure 2 these two functions are 

plotted using experimental data and the one obtained by the identification. Note that the used 

hyperelastic potential is a third order Ogden law [13]. For such material the hyperelastic potential 

is expressed as follows: 
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3

1 2 3

1

( 3)n n nn

n n

W
  

  


     (12) 

1..3i i   are the principle stretches of the Cauchy-Green strain tensor and 

; 1..3n nand n    are material’s constants to be identified. 

  

Figure 2: Hyperelastic behavior and relaxation curves  

3.2 Identification of reduced time function  

In order to satisfy thermodynamic principles via Clausius-Duhem inequality the deformation shift 

function  a C  should be a nonnegative function of the right Cauchy-Green strain tensor.  

Two identification approaches was investigated to determine this function. The first one 

consists on postulating that this function as a Mooney-Rivlin potential (Equation (13)). Several 

parameters are then identified using a minimization procedure on the error between experimental 

and theoretical stress values.  

Whereas, the second one consists on expressing the error between theoretical and 

experimental second Piola-Kirchhoff stresses for pure shear test (15) and simple extension test 

(14) as a function of the reduced time  it  at each experimental time it . For a given 

experimental stress the corresponding reduced time is obtained thanks to a minimization 

procedure over the absolute error function (equations (14) and (15)) using MATLAB software. 

Numerical values of the reduced time are obtained for each experimental time. A least square 

fitting procedure is then used to determine the form of the reduced time function. 

      1 1 2 23 3a C c I c I     (13) 

 

 

   

   

2 1
1

2

1

2 2 1
1 exp

2
0

1 10

2

2
exp

i i

i i

i

i ia

rr

i i

i ii i i

E
g

G d S

 


 


   




 
    
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

 

(14) 
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
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 
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
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(15) 

4 CONCLUDING REMARKS 

In this paper, a nonlinear viscoelastic model for rubber-like materials is presented. It’s able to 

predict the elastomers behavior in the whole range of deformation and for several strain rates. 

As a first step, a rheological motivation was investigated to build a one dimensional 

viscoelastic model. Then, a three dimensional model was developed thanks to a combination 

between two approaches: the functional approach and the internal variable approach. The 

dependence of the material’s properties on the strain was illustrated using a reduced time 

instead of the real time which is a function of the deformation history. 

The identification procedure of several parameters of the model was studied. For the 

identification of relaxation modulus/hyperelastic potential and reduced time function, 

experimental data of pure shear and uniaxial extension tests, on a natural rubber NR, was used 

with a combination of ABAQUS and MATLAB software respectively. 
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ABSTRACT

The main purpose of the work reported here is to bring out the effects of the different meso-
scale parameters of the honeycomb sandwich panel on their vibro-acoustic response using a
meso-macro approach. The present approach is developed using a numerical method known as
a wave finite element method (WFEM). The WFE method combines the classical finite element
method (FEM) and the periodic structure theory (PST). The main advantage of this method is
that it takes into consideration the periodicity of the structure, which allows to model typically
just one elementary cell instead of the whole structure. Accordingly, the calculations cost is
hugely reduced. In addition, this numerical model keeps the meso-scale parameters of the peri-
odic cell. The obtained results are compared with different analytical methods and commercial
tool (Ms-NOVA), showing a very good agreement. A vibro-acoustic parametric analysis of the
honeycomb panel with composite face-sheets is done. This analysis showed a great influence of
the cell size and of the core material on the transmission loss (TL).
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1 INTRODUCTION

In the last decade, composite materials are considered as the most successful and the most
promising materials to be used in many advanced industrial fields. Aerospace, transportation,
and other branches of civil and mechanical engineering are the major beneficiaries of their
tremendous growth. Apart from their considerably low ratio of weight to strength, some com-
posites benefit from other desirable properties, such as corrosion and thermal resistance, tough-
ness and low cost. Yet from an acoustic point of view, decreasing the mass, while keeping a
high level of stiffness, could have a significant influence on the vibro-acoustic performance of
the honeycomb sandwich panel. As a result, this might lead to unsatisfactory noise reduction
efficiency.

The prediction of accurate wave dispersion characteristics in a cellular honeycomb core
bonded by two laminated orthotropic face-sheets is a key information for computing the vibro-
acoustic indicators. Over the last few decades, various analytical methods have been developed
to predict the wave dispersion characteristics. Erickson [1] and Clarkson [2] developed methods
of estimating the modal density of typical honeycomb sandwich panels with isotropic face-
sheets. These methods take into account the effect of shear of the core on the sandwich panel’s
deflection. Renji et al. [3] introduce the orthotropic bending properties in both directions and
include the core’s transverse shear stiffness in a new analytical model. However, these analytical
methods do not reveal the meso-scale influence on the acoustic transmission of the sandwich
structure. Therefore, a numerical method need to be employed.

The numerical method reported here enables to predict the wave propagation character-
istics within a sandwich structure which provides a key to decrypt its vibro-acoustical behavior.
The method known as WFE combine the classical finite element method and the theory of pe-
riodic structures. A vibro-acoustic parametric analysis is then performed on the transmission
loss (TL) in order to study the effect of different parameters of the unit cell.

2 OVERVIEW OF THE 2D WFE METHOD

The Wave Finite Element method (WFE method) is applied for predicting the dynamic behavior
of a periodic structure. The method includes the reformulation of the equation of motion by
using the dynamic stiffness matrix. This matrix involves the mass and stiffness matrices of
a periodic cell of the sandwich structure. Structural wave motion of the sandwich structure
is expressed in terms of the eigenvalues and the eigenvectors of the dynamic stiffness matrix
(DSM) and these eigenvalues and eigenvectors represent the wavenumbers and the wave modes
respectively.

The equation of motion for periodic structural waveguides can be expressed as follows

D

(
Ubd
UI

)
=

(
fbd
0

)
. (1)

Where D = (1 + jη)K − ω2M is the dynamic stiffness matrix which is obtained from
the stiffness and the mass matrices extracted by using a finite element method package like
Ansys. Ubd and fbd are respectively the displacement and the force of the boundary nodes.
While UI represents the internal nodes.

Using the Floquet-Bloch theory for a periodic rectangular cell and assuming a time-
harmonic response, the displacements of each edge can be written as a function of the displace-

2
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ments at one single edge.

ΛL(λx, λy)DΛR(λx, λy)

U1

UL
UB

 = 0. (2)

By introducing the matrices ΛL(λx, λy) and ΛR(λx, λy) in the equation (1) a polynomial
equation of second-order obtained as written in the equation (3)

1

λ2x

(
Aλ2x +Bλx + C

)U1

UL
UB

 = 0. (3)

Where λx = eiµx , λy = eiµy and µx = kxLx, µy = kyLy are the propagation con-
stants of a plane harmonic wave in both x- and y-direction respectively. While kx, ky are the
wavenumbers along the x- and y-direction respectively.

The sound transmission through an infinite sandwich panel can be calculated by knowing
the dispersion curve of the bending wave through the plate. For a flat plate impacted by an
acoustic plane wave incidence α and φ direction, the acoustic transparency is defined as the
ratio of transmitted power through the plate to the incident power. It can be calculated as
follows:

τ(α, φ) =


[

1 + η
ωm cosα

2ρ0c0

k40 sin4 α

k4eq,φ

]2
+

[
ωm cosα

2ρ0c0
(1 − k40 sin4 α

k4eq,φ
)

]2
−1

. (4)

Where the equivalent wavenumber in the equation (4) is written as follows :

1

k2eq,φ
=

sin2 φ

k2Bx
+

cos2 φ

k2By
. (5)

The acoustic transparency diffuse field is calculated by averaging all the possible inci-
dents and directions.

τ =

∫ 2π

0

∫ π/2
0

τ(α, φ) sinα cosα dα dφ∫ 2π

0

∫ π/2
0

sinα cosα dα dφ
. (6)

Finally, the sound transmission loss is given by the following expression :

TL = 10 log(
1

τ
). (7)

The parameters to be studied in this vibro-acoustic parametric analysis are the young
modulus of the core E, the cell angle θ (the angle between horizontal cell wall and inclined cell
wall), the thickness of the walls t, the thickness of the core hc, and finally the cell size l and h
of the periodic cell (see figure 1).

3 RESULTS

A periodic segment of a honeycomb sandwich panel with orthotropic face-sheets is considered
hereby (see figure 1) with Lx, Ly its surface’s dimensions and ht = hc + hf its total thickness.
The geometrical and material properties of the periodic segment were summarized in Table 1.
The vibro-acoustic study is performed in a frequency range between 0 Hz and 5000 Hz.

3

122/361



DYNCOMP’2015 2-4 June 2015, Arles (France)

Figure 1. Cell geometrical parameters of the periodic hexagonal cell.

Core (Nomex material) Skins (Epoxy resin with carbon yarn)
E = 5.5 GPa E1 = 133.6 GPa
ρ = 1240 kg/m3 E2 = 7.7 GPa

Material G = 2.07 GPa E2 = 7.7 GPa
µ = 0.33 G12 = 3.1 GPa

µ12 = µ13 = 0.29
hc = 12 mm hf = 1 mm

Geometry t = 76.2µm [0, 45, 90,−45]s
l = h = 2.7 mm eUD = 125 µm

θ = 30o

Table 1. The material and geometrical parameters of the periodic cell.

Figure 2. Comparisons of different analytical and numerical models in terms of TL.

4
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Figure 2 present the comparison of the current model with analytical models and com-
mercial tool (Ms-Nova). The comparison of the meso-macro approach with the analytical model
shows a good agreement either in the critical frequency or in the rest of the frequency range.
However, the comparison with commercial tool exhibits a slight difference, these initial com-
parisons allow us to validate the present model.

Figure 3. Effect of the cell angle θ on the transmission loss.

The parametric study on the cell angle θ presented in Figure 3 indicates that the cell
angle θ generally influences on the sound transmission loss (TL) whether in the low, medium
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or high frequency ranges. On the one hand, with the positive cell angle θ, the more the angle
increases the more the critical frequency decreases and the sound transmission loss is enhanced
throughout the whole frequency band. On the other hand, for the negative cell angle θ, the more
the angle decreases the more the sound transmission loss rises as well as the critical frequency
is shifted.

Figure 4. Effect of cell size h and l on the transmission loss.

Figure 4 exhibits the comparison of the different curves of the sound transmission loss
while varying the cell size (h and l).The comparison showed that the more the parameter h
increases the more the sound transmission loss improves. However, the critical frequency of the
sandwich panel decreases.

Figure 5: Effect of the thickness of the core hc and the thickness of the walls e on the transmis-
sion loss.
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The comparison performed in Figure 5 by changing the ratio of e/hc, shows that the
more the thickness of the core’s sandwich panel hc decreases and the thickness of the walls
of the periodic cell e increases, the more the sound transmission loss enhances and the critical
frequency shifts.

Figure 6. Effect of the cell size l and the thickness of the core hc on the transmission loss.

The next comparison is carried out between the thickness of the core’s sandwich panel
hc and the cell size l. Figure 6 shows that the more the cell size l increases with respect to the
thickness hc the more the critical frequency increases until the transmission loss curve becomes
smooth. However, the sound transmission loss curve decreases in the different frequency range.

Figure 7. Effect of the young modulus E of the core on the transmission loss.
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In Figure 7, a comparison of the sound transmission loss (TL) with respect to the young
modulus E of the core is presented. The comparison exhibits that the more the young modulus
E increases the more the sound transmission loss enhances up to a certain value at which the
sound transmission loss curve will not increase. However, the critical frequency decreases when
the young modulus increases.

Figure 8. Effect of the cell size l and the thickness of the walls e on the transmission loss.

In Figure 8, a parametric study of the ratio e/l the walls’ thickness e with respect to
the cell size l is presented. the study indicates that the more the walls’ thickness of the cell
increases the more the critical frequency shifts until the curve becomes smooth. However, The
sound transmission loss curve decreases when the ratio e/l increases.

4 CONCLUSION

The presented vibro-acoustic parametric analysis used the meso-macro approach, based on the
wave finite element method (WFE), showed clearly that the geometrical and material properties
of the periodic unit cell of the panel has a significant influence on the sound transmission loss
(TL) as well as on the shifting of the critical frequency. In the present vibro-acoustic study,
when changing two parameters at the same time, the criteria was to maintain the mass con-
stant. Subsequently, This vibro-acoustic parametric analysis will facilitate the next step which
is the optimization study. This later will permit to define the optimal design parameters of the
honeycomb sandwich panel.
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ABSTRACT

Anisotropic and sandwich structures are used in many engineering areas such as aerospace
and automotive constructions. These types of structures are often used because of their high
stiffness to mass ratios. However these structures oftentimes present a compromise between
their mechanical and vibro-acoustic behaviour. The vibro-acoustic study for the anisotropic
and sandwich structures is well developed during the last years.

There are many methods which allow the computation of the wavenumbers for isotropic
and anisotropic structures. Analytical formulas exist to calculate the wavenumbers of anisotropic
plates based on the Classical Laminate Plate Theory. To take into account shear deformation,
Whitney suggested the formulation of the First-order Shear Deformation Theory (FSDT). A
model for an infinite sandwich panel by including the description of symmetric and antisym-
metric motions was developed. Leppington expressed the radiation efficiency of a rectangular
panel as well as the vibroacoustic response under a reverberant field of thin orthotropic panels.

To deal with the wave characteristics in periodic structures, the Wave Finite Element
Method (WFEM) is used. This spectral formulation is a result of a coupling between the con-
ventional finite element method and the periodic structure theory. Its formulation starts with
the discretization of the studies structure. An eigenvalue problem is then formulated using the
periodicity of the structure. The general theory of the WFE is proposed by Mead and was im-
proved by Zhong and Williams. This approach is then used for predicting the acoustic behavior
of anisotropic plates. It investigates the evolution of radiation efficiency and sound transmission
loss with frequency.

In all presented formulations, the input parameters are deterministic. However for lay-
ered structures, there is a high variability of mechanical parameters. The main novelty of this
paper is investigating the effects of the uncertain mechanical parameters on the acoustic be-
haviour of anisotropic structures, especially in mid- and high frequencies.
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This paper discusses the effect of uncertain parameters on vibro-acoustic behavior, es-
pecially on the Sound Transmission Loss (STL) of composite panels. The formulation presented
is hybridization between spectral, energetic and uncertain methods. The Uncertain inputs pa-
rameters are represented using a parametric probabilistic approach which allows for the sepa-
ration between the deterministic and the stochastic components in the process.

The second order stochastic parameters are developed using the generalized polynomial
chaos expansion. In order to evaluate the outputs, there are two different methods: intrusive
and non-intrusive methods. The efficiency of the approach is exhibited for isotropic panels.
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1 INTRODUCTION

Anisotropic and sandwich structures are used in many engineering areas such as aerospace and
automotive constructions. To deal with this type of structures in high frequencies, the Statistical
Energy Analysis (SEA) is often used to predict the dynamic behavior of structures. The SEA
method is based on the calculation of the energy quantities exchanged between the sub-systems.
In the case of structural wave modelling, waves represent SEA subsystems, and the use of
the SEA consist on evaluating the energy exchange between waves. Before using an SEA
approach, the identification of the propagating waves is first investigated to obtain the spectrum
of the wave dispersion characteristics. There are many methods which allow the computation
of the wavenumbers for isotropic and anisotropic structures. Analytical formulas exist for the
calculation of wavenumbers of anisotropic plates based on the Classical Laminate Plate Theory
[1]. To take into account shear deformation, Whitney et al. [2] suggested the formulation of the
First-order Shear Deformation Theory (FSDT). Dym and Lang [3] developed a model for an
infinite sandwich panel by including the description of symmetric and antisymmetric motions.
A Higher-order Shear Deformation Theory (HSDT), initially conceived in [4] is applied in [5]
for expressing the vibroacoustic response of a structure within an SEA context. Leppington
et al.[6] expressed the radiation efficiency of a rectangular panel as well as the vibroacoustic
response under a reverberant field [7] of thin orthotropic panels.

This paper discusses the effect of uncertain parameters on vibro-acoustic behavior of
composite panels. The formulation presented is a hybridization between spectral, energetic and
uncertain methods. The Uncertain inputs parameters are represented using a parametric prob-
abilistic approach which allows for the separation between the deterministic and the stochastic
components in the process. The second order stochastic parameters are developed using the gen-
eralized polynomial chaos expansion. In order to evaluate the outputs, there are two different
methods: intrusive and non-intrusive methods. The first one consists in projecting the process
using a Galerkin approach to obtain a set of deterministic equations instead of the stochastic
one. The second method is based on simulations of the deterministic model before an adequate
post-processing to evaluate the uncertainty of the output parameters. In this paper, different
methods are presented and discussed.

2 WAVE BASED PREDICTION OF THE VIBROACOUSTIC PERFORMANCE FOR
A COMPOSITE STRUCTURE

2.1 Wave propagation analysis by a 2D Finite Element method

A rectangular periodic composite panel composed by N identical sub-structures is considered.
The dimensions of the panel are : Lx, Ly and h its thickness(see fig.1). Using the conventional
finite element method, a single periodic segment of the composite panel is modeled and the
mass and stiffness matrices are extracted

3
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Figure 1. A periodic composite panel

The entries for each Degree of Freedom (DoF), of the nodes laying on the same edge of
the segment, say edges Q, R, S and T, are organized in the mass and stiffness matrices so that
the displacements can be written as: u = {uQ uR uS uT}T . Following the analysis presented
in [8] the time-harmonic equation of motion of the segment assuming uniform and structural
damping can be written as: (

K (1 + ηi)− ω2M
)
u = F (1)

Q

R

T

S

{
{hi

hi+1

h

x

y

z

dy
dx

Figure 2. View of the modeled periodic segment with its edges Q, R, S and T

where η is the structural damping coefficient, ω is the angular frequency and F the vector
of the nodal forces. The dynamic stiffness matrix can be written as :

D = K (1 + ηi)− ω2M (2)

therefore equation (1) may be written as:
DQQ DQR DQS DQT

DRQ DRR DRS DRT

DSQ DSR DSS DST

DTQ DTR DTS DTT




uQ

uR

uS

uT

 =


FQ

FR

FS

FT

 (3)

Using periodic structure theory for the modelled segment and assuming a time-harmonic
response the displacements of each edge can be written as a function of the displacements at
one single edge. Taking edge Q as the edge of reference we have:

uR = λxuQ, uS = λyuQ, uT = λxλyuQ (4)

4
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Using the same theory, the force vectors can be written as:

FR = λxFQ, FS = λyFQ, FT = λxλyFQ (5)

With λx and λy the phase constants which are related to the wavenumbers kx and ky
through the relation:

λx = e−ikxdx , λy = e−ikydy (6)

The displacement vector can therefore be written as:
uQ

uR

uS

uT

 =


I
λxI
λyI
λxλyI

uQ (7)

Assuming no external excitation, the equilibrium conditions along edge Q implies that:

{
I λ−1

y I λ−1
x I λ−1

x λ−1
y I

}
FQ

FR

FS

FT

 = 0 (8)

Eventually, substituting equation (7), (8) in equation (1) we end up with the eigenprob-
lem:

{
I λ−1

y I λ−1
x I λ−1

x λ−1
y I

}
D


I
λxI
λyI
λxλyI

uQ = 0 (9)

2.2 Calculation of the modal density

Using the Courant’s formula [9], the modal density of each propagating wave type w can be
written for each angle φ as a function of the propagating wavenumber (obtained by the WFE
2D 2.1) and its corresponding group velocity cg:

nw (ω, φ) =
A kw (ω, φ)

2π2 |cg,w (ω, φ) |
(10)

where A is the area of the panel and the group velocity is expressed as:

cg (ω, φ) =
dω

dk (ω, φ)
(11)

The averaged modal density of the structure is eventually given as:

nw (ω) =

∫ π

0

nw (ω, φ) dφ (12)
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2.3 Calculation of the radiation efficiency

In order to calculate the radiation efficiency σ (k (ω)) for each propagating wave type, the set
of asymptotic formulas given in [6] can be used in order to compute σ (k (ω)). Within an
SEA context, energy equipartition amongst the resonant modes is assumed so that the radiation
efficiency is expressed as:

σrad (ω) =
1

n (ω)

∫ π

0

σ (k (ω, φ))n (ω, φ) dφ (13)

For a periodic discontinuous structure assuming sinusoidal mode shapes is no longer
valid; therefore the radiation efficiency should be computed directly from the WFEM derived
wave mode shapes. The radiation efficiency expression given in [10] can be employed for this
purpose.

3 EMPLOYING THE GENERALIZED POLYNOMIAL CHAOS EXPANSION (GPCE)
WITHIN THE VIBROACOUSTIC RESPONSE MODELLING

The polynomial chaos expansion is an efficient tool for describing uncertainty propagation in
mechanical systems. It consist on separating between the stochastic components of a random
function and its deterministic components. This theory, developed by Wiener [11], helps to
expand any second order process u (with finite variance) in a series of orthogonal polynomials
as:

u = u0H0 +
∞∑
i1=1

ui1H1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ui1i2H2(ξi1 , ξi2) +
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i2H3(ξi1 , ξi2 , ξi3) + · · ·

(14)

where Hp(ξi1 , · · · , ξip) represents orthogonal polynomial (chaos polynomials) of order p. In
practice, the polynomial chaos expansion is truncated to a finite number of terms. In a compact
form, equation (14) can be expressed as:

u ≈
P∑
i=0

uiΨi(ξ) , G =

p∑
k=0

Ck
M+k−1 =

(M + p)!

M !p!
(15)

where ξ = [ξi1 , · · · , ξip ]T , and M denoting the number of the uncertain parameters.
Since in most applications the stochastic input variables are not normal, Xiu and Karniadakis
[12] proposed a generalized form of Hermite polynomial chaos expansion using other orthog-
onal polynomials in terms of non-Gaussian random variables called wiener-askey. Table 1
resumes usual random variables and their orthogonal polynomials.

Random variable ξ Winer-Askey chaos Ψ(ξ) Support
Continue distributions Gaussian Hermite (−∞,+∞)

Uniform Legendre [a,b]
Gamma Laguerre [0,∞]

Beta Jacobi [a, b]
Discrete distribution Poisson Charlier {0, 1, · · · , }

binomial Krawtchouk {0, 1, · · · , N}

Table 1: Correspondence between the choice of polynomial and given distribution of usual
random variables
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When the input parameters have not a non-Gaussian behavior, the parametrization of the
problem is quite difficult. Rosenblatt [13] proposed a simple transformation of non-Gaussian
distributions to Gaussian ones. Some analytical transformations are mentioned in the following
table:

Distribution Transformation
Uniform (a, b) a+ (b− a)

(
0.5 + 0.5erf(ξ/

√
2)
)

Normal (µ, σ) µ+ σξ
Lognormal (µ, σ) exp(µ+ σξ)

Gamma (a, b) ab
(
ξ
√

( 1
9a

+ 1− 1
9a

)
)3

Exponential (λ) − 1
λ
log
(

1
2

+ 1
2
erf(ξ/

√
2)
)

Table 2. Random variables and their transformations

with erf(x) = 2√
Π

∫ x
0
e−t

2
dt.

4 NUMERICAL VALIDATIONS

This section deals with numerical validations of the proposed formulation. As presented above,
the formulation is a hybridization of an energy based approach, the wave finite element method
and a parametric probabilistic approach. The objective of the approach is identifying the effects
of uncertain parameters on the acoustic and vibro-acoustic behaviour of panels.

4.1 Isotropic honeycomb panel

In order to validate the suggested models, the first case study is evaluating the acoustic para-
meters for an isotropic honeycomb panel. The mechanical properties of facesheets and the core
are mentioned in Table 3:

E (Pa) ρ (kg/m3) thickness (m) Poisson’s ratio Structural damping
Facesheets 49 · 109 1600 5 · 10−4 0.15 1 %

Core 1.951 · 108 160 6.3 · 10−3 0.15 1 %

Table 3. Mechanical characteristics of facesheets and the core for the isotropic panel

The structure dimensions are : Lx = 0.84 m and Ly = 0.42 m. Regarding the pe-
riodicity of the panel, only one periodic segment with dx = 0.02 (m) and dy = 0.005 (m)
is discretized using the conventional finite element method. The mass and stiffness matrices
are then extracted in order to formulate the polynomial eigenvalue problem exhibited above.
Knowing that the structure is an isotropic one, suggests that the wave properties are the same
in all propagation directions in the structure. Therefore solving the eigenproblem for only one
direction of propagation will suffice for capturing the entirety of the wave propagation data for
the panel.

In order to apply the stochastic process, the mechanical parameters are assumed to be
uncertain with different evolution. Table 4 summarizes the different stochastic parameters and
their distributions. The choice of the Lognormal distribution is used regarding the positivity of
the uncertain parameters.

7

135/361



DYNCOMP’2015 2-4 June 2015, Arles (France)

Random variables Type of distribution Mean Standard deviation
Young modulus of facesheets (Pa) Lognormal 49 · 109 5%

Density of facesheets (kg m−3) Lognormal 1600 5%
Young modulus of core (Pa) Lognormal 1.951 · 108 10%

Density of core (kg m−3) Lognormal 160 10%
Damping Uniform 0.01 5%

Table 4. Random variables

In this stochastic calculations step, the isoprobabilistic transformations are used to move
from a non-Gaussian distribution to a Gaussian one. Then, the Latin Hypercube Sampling is
performed to apply the stochastic process with lower computation effort.

The wavenumber values for the first flexural wave of the isotropic sandwich structure
are presented in Fig.3. In the same figure the envelope representing the min-max wavenumber
due to the input stochastic parameters, as well as the standard deviation of the wavenumber val-
ues are also exhibited. It should be noted that the out of plane structural motion of the flexural
wave is responsible for transmitting the vast majority of acoustic energy, therefore this will be
the main wave type taken into account during the subsequent analysis. It is observed that the
effect of parametric uncertainties on the flexural wavenumber is small for low frequencies (<
1000 Hz) with a maximum deviation of approximately 1.5%. With an increasing frequency the
effect of the structural parametric uncertainties on the wavenumber becomes more evident, with
the maximum deviation from the mean value being equal to 13.4% at the highest frequency of
the analysis (10 kHz). Considering the standard deviation of the flexural wavenumber values a
piece-wise linearity is observed. The first low frequency region is observed up to frequencies
of 1000 Hz while for higher frequencies a second linear region of a higher gradient is exhibited.
With regard to both the results of the wavenumber as well as its standard deviation values an ex-
cellent agreement is observed between the presented approach and the Monte Carlo simulation
results. It is noted that 4000 samples were considered during the Monte Carlo simulation.

[] []

Figure 3: Wavenumber : (a) mean and min-max envelop, (b) Standard deviation, (-) WFE-
Chaos, (*) Monte Carlo
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[] []

Figure 4: Group velocity : (a) mean and min-max envelop, (b) Standard deviation, (-) WFE-
Chaos, (*) Monte Carlo

The group velocity results for the first flexural wave of the isotropic sandwich structure
are presented in Fig.4. In the same figure the envelope representing the min-max group velocity
values due to the input stochastic parameters, as well as the standard deviation of the group
velocity are also presented. As with the wavenumber results it can be observed that for low
frequencies (< 800 Hz) the impact of parametric uncertainties on the group velocity values
of the flexural wavenumber is insignificant. For higher frequencies the effect of the structural
parametric uncertainties on the group velocity results becomes important, with the maximum
deviation from the mean value being equal to 19.2% at 5 kHz. With regard to the standard
deviation of the flexural wavenumber group velocity it can be observed that it increases up to a
certain frequency where it attains a maximum value; that is at approximately 5000 Hz. Again, as
with the wavenumber results an excellent agreement is observed between the exhibited approach
and the Monte Carlo simulation results.

[] []

Figure 5: Radiation efficiency :: (a) mean and min-max envelop, (b) Standard deviation, (-)
WFE-Chaos, (*) Monte Carlo
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[] []

Figure 6: Transmission Loss: (a) mean and min-max envelop, (b) Standard deviation, (-) WFE-
Chaos, (*) Monte Carlo

5 CONCLUSIONS

The modelling of the vibro-acoustic behaviour of composite layered structures with uncertain
parameters was considered in this paper. The presented approach is a combination of a wave
based SEA approach and a parametric probabilistic approach. The first method consists in
evaluating the wave propagation characteristics within composite structures. A spectral method,
based on the periodicity of the structure studied is presented. Then, the SEA can be applied to
identify the evolution of energy quantities between different sub-structures. In our case, all
waves are considered as substructures. This approach leads to obtain vibro-acoustic indices
such as the radiation efficiency and the sound transmission loss for each considered wave type.
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REFERENCES

[1] J. N. Reddy. Mechanics of laminated composite plates: theory and analysis, volume 1.
CRC press Boca Raton, 1997.

[2] J. Whitney and N. Pagano. Shear deformation in heterogeneous anisotropic plates. A Appl
Mech Trans ASME, 37 Ser E(4):1031–1036, 1970.

[3] C. L. Dym and M. A. Lang. Transmission of sound through sandwich panels. Journal of
the Acoustical Society of America, 56(5):1523–1532, 1974.

[4] JN Reddy. A refined nonlinear theory of plates with transverse shear deformation. Inter-
national Journal of Solids and Structures, 20(9):881–896, 1984.

[5] VS. Sokolinsky and SR. Nutt. Consistent higher-order dynamic equations for soft-core
sandwich beams. AIAA Journal, 42(2):374–382, 2004.

10

138/361



DYNCOMP’2015 2-4 June 2015, Arles (France)

[6] F. G. Leppington, E. G. Broadbent, and K. H. Heron. Acoustic radiation efficiency of rect-
angular panels. In Proceedings of The Royal Society of London, Series A: Mathematical
and Physical Sciences, volume 382, pages 245–271, 1982.

[7] F. G. Leppington, K. H. Heron, and E. G. Broadbent. Resonant and non-resonant trans-
mission of random noise through complex plates. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 458(2019):683–704, 2002.

[8] B.R. Mace and E. Manconi. Modelling wave propagation in two-dimensional structures
using finite element analysis. Journal of Sound and Vibration, 318(4-5):884–902, 2008.

[9] R. Courant and D. Hilbert. Methods of mathematical physics, vol. 1. New York: John
Wiley, 1989.

[10] V. Cotoni, R. S. Langley, and P. J. Shorter. A statistical energy analysis subsystem formu-
lation using finite element and periodic structure theory. Journal of Sound and Vibration,
318(4-5):1077–1108, 2008.

[11] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60:897–936,
1938.

[12] D. Xiu and G. E. Karniadakis. The wiener-askey polynomial chaos for stochastic differ-
ential equations. SIAM Journal on Scientific Computing, 24 (2):619–644, 2002.

[13] M. Rosenblatt. Remarks on a multivariate transformation. The Annals of Mathematical
Statistics, 23(3):470–472, 1952.

11

139/361



DYNCOMP’2015 2-4 June 2015, Arles (France)

WAVE BASED DESIGN OPTIMISATION OF COMPOSITE
STRUCTURES OPERATING IN DYNAMIC ENVIRONMENTS

D. Chronopoulos1, S. Leerungruang1, M. Collet2, and M. Ichchou3

1Division of Materials, Mechanics and Structures
University Park, The University of Nottingham, NG7 2RD, UK

e-mail: dimitrios.chronopoulos@nottingham.ac.uk

2LTDS, UMR-CNRS 5513
36 Avenue Guy de Collongue, 69130 Ecully, France

e-mail: manuel.collet@ec-lyon.fr

3Ecole Centrale de Lyon
36 Avenue Guy de Collongue, 69130 Ecully, France

e-mail: mohamed.ichchou@ec-lyon.fr

ABSTRACT

The optimal mechanical and geometric characteristics for layered composite structures sub-
ject to vibroacoustic excitations are derived. A Finite Element description coupled to Peri-
odic Structure Theory is employed for the considered layered panel. Structures of arbitrary
anisotropy as well as geometric complexity can thus be modelled by the presented approach.
Initially, a numerical continuum-discrete approach for computing the sensitivity of the acoustic
wave characteristics propagating within the modelled periodic composite structure is exhibited.
The first and second order sensitivities of the acoustic transmission coefficient expressed within
a Statistical Energy Analysis context are subsequently derived as a function of the computed
acoustic wave characteristics. Having formulated the gradient vector as well as the Hessian
matrix, the optimal mechanical and geometric characteristics satisfying the considered mass, s-
tiffness and vibroacoustic performance criteria are sought by employing Newton’s optimisation
method.
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1 INTRODUCTION

Layered and complex structures are nowadays widely used within the aerospace, automotive,
construction and energy sectors with a general increase tendency, mainly because of their high
stiffness-to-mass ratio and the fact that their mechanicalcharacteristics can be designed to suit
the particular purposes. Unluckily however, this high stiffness-to-mass ratio being responsi-
ble for the increased mechanical efficiency, at the same timeinduces high acoustic transmis-
sion through the structure. The need for simultaneously optimising an industrial structure of
minimum mass and maximum static stiffness, while attainingsatisfactory dynamic response
performance levels is a challenging task for the modern engineer; especially when considering
acoustic transmission through a layered structure which depends on the mechanical and geo-
metric characteristics of each individual layer, resulting in a great number of design parameters
to be optimised.

In this work an established wave based SEA approach is employed in order to predict
the vibroacoustic performance of a composite layered panel. The novelty of the work focuses
on the derivation of the first and second order sensitivity ofthe acoustic transmission coefficient
expressed through SEA with respect to the structural designcharacteristics of the modelled
structure. The considered design parameters include the entirety of the mechanical character-
istics, the density as well as the thickness of each individual structural layer. Non conservative
structural systems are also modelled by the exhibited approach. Employing a three dimensional
FE description of the modelled structure allows for capturing the entirety of the sound trans-
mitting propagating structural waves, while employing a PST formulation allows for drastically
reducing the computational cost related to calculating theSEA parameters and the Hessian ma-
trix for each configuration. Although not discussed in this work, the method is straightforward
to apply to curved structures by expressing the FE structural matrices and wave propagation
properties in polar coordinates.

2 ACOUSTIC WAVE SENSITIVITY

2.1 Formulation of the PST for an arbitrary structural segment

A periodic segment of a panel having arbitrary layering is hereby considered (see Fig.1) with
Lx, Ly its dimensions in thex andy directions respectively. The segment is modelled using a
conventional FE software. The mass, damping and stiffness matrices of the segmentM, C and
K are extracted and the DoF setq is reordered according to a predefined sequence such as:

q = {qI qB qT qL qR qLB qRB qLT qRT}
⊤ (1)

corresponding to the internal, the interface edge and the interface corner DoF (see Fig.1). The
free harmonic vibration equation of motion for the modelledsegment is written as:

[K+ iωC− ω2M]q = 0 (2)

The analysis then follows as in [1] with the following relations being assumed for the
displacement DoF under the passage of a time-harmonic wave:

qR =e−iεxqL, qT =e−iεyqB

qRB =e−iεxqLB, qLT =e−iεyqLB, qRT =e−iεx−iεyqLB

(3)

with εx andεy the propagation constants in thex andy directions related to the phase differ-
ence between the sets of DoF. The wavenumberskx, ky are directly related to the propagation

2
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Figure 1. Caption of a FE modelled composite layered panel

constants through the relation:

εx = kxLx, εy = kyLy (4)

Considering Eq.3 in tensorial form gives:

q =



























I 0 0 0

0 I 0 0

0 Ie−iεy 0 0

0 0 I 0

0 0 Ie−iεx 0

0 0 0 I

0 0 0 Ie−iεx

0 0 0 Ie−iεy

0 0 0 Ie−iεx−iεy



























x = Rx (5)

with x the reduced set of DoF:x = {qI qB qL qLB}
⊤. The equation of free harmonic vibra-

tion of the modelled segment can now be written as:

[R∗KR+ iωR∗CR− ω2R∗MR]x = 0 (6)

with ∗ denoting the Hermitian transpose. The most practical procedure for extracting the wave
propagation characteristics of the segment from Eq.6 is injecting a set of assumed propagation
constantsεx, εy. The set of these constants can be chosen in relation to the direction of propa-
gation towards which the wavenumbers are to be sought and according to the desired resolution
of the wavenumber curves. Eq.6 is then transformed into a standard eigenvalue problem and
can be solved for the eigenvectorx which describe the deformation of the segment under the
passage of each wave type at an angular frequency equal to thesquare root of the corresponding
eigenvalueλ = ω2. It is noted that the computed angular frequency quantitiesω = ωr + iωi

will have | ωi |> 0 implying complex values for the wavenumbers of the propagating wave
types, otherwise interpreted as spatially decaying motionand from which the loss factor of each
computed wave typew can directly be determined.

A complete description of each passing wave including itsx andy directional wavenum-
bers and its wave shape for a certain frequency is therefore acquired. It is noted that the period-
icity condition is defined modulo 2π, therefore solving Eq.6 with a set ofεx, εy varying from
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0 to 2π will suffice for capturing the entirety of the structural waves. Further considerations on
reducing the computational expense of the problem are discussed in [1]. It should be noted that
only propagating waves will be considered in the subsequentanalysis.

2.2 Parametric sensitivity

For an undamped structural segment the sensitivity of the real eigenvaluesλp can be written as

∂λp

∂βi

=x⊤
p

(

∂K

∂βi

− λp
∂M

∂βi

)

xp

∂2λp

∂βj∂βi

=x⊤
p

(

∂2K

∂βj∂βi

− λp
∂2M

∂βj∂βi

−
∂λp

∂βj

∂M

∂βi

−
∂λp

∂βi

∂M

∂βj

)

xp

+ x⊤
p

(

∂

∂βj

[

K− λpM

])

∂xp

∂βi

+ x⊤
p

(

∂

∂βi

[

K− λpM

])

∂xp

∂βj

(7a)

(7b)

with the sensitivity of the real mode shapes
∂xp

∂βj

to be calculated by the approach exhibited

in [2]. The global mass and stiffness matricesM,K of the structural segment are formed by
adding the local mass and stiffness matrices of individual FEs. Eq.7 can be written as

∂λp

∂βi
=x

⊤
p

(

R
∗ ∂K

∂βi
R− λpR

∗ ∂M

∂βi
R

)

xp

∂2λp

∂βj∂βi
=x

⊤
p

(

R
∗ ∂2

K

∂βj∂βi
R− λpR

∗ ∂2
M

∂βj∂βi
R−R

∗ ∂λp

∂βj

∂M

∂βi
R−R

∗ ∂λp

∂βi

∂M

∂βj
R

)

xp+

x
⊤
p

(

∂

∂βj

[

R
∗
KR− λpR

∗
MR

])

∂xp

∂βi
+ x

⊤
p

(

∂

∂βi

[

R
∗
KR− λpR

∗
MR

])

∂xp

∂βj

(8a)

(8b)

For the conservative system it is known however that
∂λp

∂βi
=

∂(ω2
p)

∂βi
, therefore

∂λp

∂βi
=

∂(ω2
p)

∂ωp

∂βi

∂ωp

= 2ωp
∂ωp

∂βi
⇔

∂ωp

∂βi
=

1

2ωp

∂λp

∂βi

∂2λp

∂βj∂βi
= 2

∂ωp

∂βj

∂ωp

∂βi
+ 2ωp

∂2ωp

∂βj∂βi
⇔

∂2ωp

∂βj∂βi
=

1

2ωp

(

∂2λp

∂βj∂βi
− 2

∂ωp

∂βj

∂ωp

∂βi

)

(9a)

(9b)

with ωp the angular frequency at which the set ofεx, εy is true for thep wave type described by

thexp deformation. For the wavenumber sensitivity
∂kp
∂βi

the following is true

∂kp
∂βi

= −
∂kp
∂ωp

∂ωp

∂βi

= −
1

cg,p

∂ωp

∂βi

∂2kp
∂βj∂βi

=
1

c3g,p

∂cg,p
∂kp

∂ωp

∂βj

∂ωp

∂βi

−
1

cg,p

∂2ωp

∂βj∂βi

(10a)

(10b)

with cg,p =
∂ωp

∂kp
the group velocity associated with the wave typep at frequencyωp and the

quantitiescg,p,
∂cg,p
∂ωp

to be evaluated by the solution of the baseline structural design.
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Figure 2: A schematic representation of the SEA power exchanges and energies for the mod-
elled system.

3 SEA SENSITIVITY ANALYSIS

3.1 The employed SEA model

The impact of the parametric alterations on the vibroacoustic performance of the structure under
investigation is exhibited in this section by deriving expressions for the sensitivity of the SEA
results with respect to the propagating acoustic waves.

The total acoustic transmission coefficientτ is one of the most important indices of the
vibroacoustic performance of a structure. The system to be modelled comprises one acous-
tically excited chamber (subsystem 1) and one acousticallyreceiving chamber (subsystem 3)
separated by the modelled composite panel (subsystem 2). Itis considered that each wave type
is excited and transmits acoustic energy independently from the rest, therefore each considered
wave typew = w1, w2...wn propagating within the composite panel is considered as a separate
SEA subsystem. No flanking transmission is considered in theSEA model. The energy bal-
ance between the subsystems as it is considered within an SEAapproach (see [3]) is illustrated
in Fig.2, in whichE1, E3 stand for the acoustic energy of the source room and the receiving
room respectively andE2 for the vibrational energy of the composite panel. MoreoverPin is
the injected power in the source room,P1d, P2d andP3d stand for the power dissipated by each
subsystem andP13 is the non-resonant transmitted power between the rooms.

The derivation of an expression for the total acoustic transmission coefficientτ of the
composite structure by merely accounting for its structural dynamic behaviour is exhibited in
[4] and reads

τ =
wn
∑

w=w1

τw +
P13

Pinc

(11)

with τw being the transmission coefficient of the wave typew given as

τw =
8ρ2c4πσ2

rad,wnw

ρsω2A(ρsωηw + 2ρcσrad,w)
(12)

The non resonant transmission coefficientτnr = P13/Pinc for a diffused acoustic field
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can be written as in [5]:

τnr(ω) =
1

π(cos2 θmin − cos2 θmax)

∫ 2π

0

∫ θmax

0

4Z2
0

| iωρs + 2Z0 |2
σ(θ, φ, ω) cos2 θ sin θdθdφ

(13)
in which θ andφ are the incidence angle and the direction angle of the acoustic wave respec-
tively andZ0 = ρc/ cos θ is the acoustic impedance of the medium. The termθmax stands for
the maximum incidence angle, accounting for the diffuseness of the incident field. It is hereby
considered thatθmax = π/2 for all the results presented in the current work. The termσ(θ, φ, ω)
is the corrected radiation efficiency term. It is used in order to account for the finite dimensions
of the panel and it is calculated using a spatial windowing correction technique presented in [6].

Eventually the STL of the panel can be expressed as

STL = 10 log10

(

1

τ

)

(14)

by definition.

3.2 Parametric sensitivity of the total acoustic transmission

In order to formulate the expression of the Hessian matrix describing the variation of the vi-
broacoustic performance of the structure with respect to its design parameters, the second order
derivative ofτ with respect to the considered set of parameters should be derived and expressed
as

∂τ

∂βi

=
wn
∑

w=w1

∂τw
∂βi

+
∂τnr
∂βi

∂2τ

∂βj∂βi

=
wn
∑

w=w1

∂2τw
∂βj∂βi

+
∂2τnr
∂βj∂βi

(15a)

(15b)

while the sensitivity of the STL index can directly be expressed with regard toτ as

∂(STL)

∂βi
=

d(STL)
dτ

∂τ

∂βi
= −

10

ln(10)τ

∂τ

∂βi

∂2(STL)

∂βj∂βi
=

∂2(STL)

∂τ 2
∂τ

∂βj

∂τ

∂βi
+

∂(STL)

∂τ

∂2τ

∂βj∂βi

=
10

ln(10)τ 2
∂τ

∂βj

∂τ

∂βi
−

10

ln(10)τ

∂2τ

∂βj∂βi

(16a)

(16b)

In the following sections the evaluation of Eq.15 is discussed.

3.3 Modal density sensitivity

Using Courant’s formula [7], the modal density of each wave typew can be written at a propaga-
tion angleφ as a function of the propagating wavenumber and its corresponding group velocity
cg:

nw (ω, φ) =
Akw (ω, φ)

2π2|cg,w (ω, φ) |
(17)
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The angularly averaged modal density of the structure is therefore given as

nw (ω) =

∫ π

0

nw (ω, φ)dφ (18)

Thanks to the chain differentiation rule the first and secondorder derivatives of the modal den-
sity for each wave type with respect to design variablesβi, βj can be expressed as

∂nw (ω, φ)

∂βi

=
∂nw (ω, φ)

∂kw (ω, φ)

∂kw (ω, φ)

∂βi

+
∂nw (ω, φ)

∂cg,w (ω, φ)

∂cg,w (ω, φ)

∂βi

=
A

2π2|cg,w (ω, φ) |

∂kw (ω, φ)

∂βi

−
Akw (ω, φ) sgn(cg,w (ω, φ))

2π2|cg,w (ω, φ) |2
∂cg,w (ω, φ)

∂kw (ω, φ)

∂kw (ω, φ)

∂βi

∂2nw (ω, φ)

∂βj∂βi

=
∂2nw (ω, φ)

∂kw (ω, φ)2
∂kw (ω, φ)

∂βj

∂kw (ω, φ)

∂βi

+
∂nw (ω, φ)

∂kw (ω, φ)

∂2kw (ω, φ)

∂βj∂βi

+
∂2nw (ω, φ)

∂cg,w (ω, φ)2
∂cg,w (ω, φ)

∂βj

∂cg,w (ω, φ)

∂βi

+
∂nw (ω, φ)

∂cg,w (ω, φ)

∂2cg,w (ω, φ)

∂βj∂βi

=
A

2π2|cg,w (ω, φ) |

∂2kw (ω, φ)

∂βj∂βi

+
Akw (ω, φ) sgn(cg,w (ω, φ))

π2|cg,w (ω, φ) |3

(

∂cg,w (ω, φ)

∂kw (ω, φ)

)

2 ∂kw (ω, φ)

∂βj

∂kw (ω, φ)

∂βi

−
Akw (ω, φ) sgn(cg,w (ω, φ))

2π2|cg,w (ω, φ) |2

(

∂2cg,w (ω, φ)

∂kw (ω, φ)2
∂kw (ω, φ)

∂βj

∂kw (ω, φ)

∂βi

+
∂cg,w (ω, φ)

∂kw (ω, φ)

∂2kw (ω, φ)
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(19a)

(19b)

while for the spatially averaged modal density

∂nw (ω)

∂βi
=

∫ π

0

∂nw (ω, φ)

∂βi
dφ

∂2nw (ω)

∂βj∂βi

=

∫ π

0

∂2nw (ω, φ)

∂βj∂βi

dφ

(20a)

(20b)

suggesting that the modal density sensitivity can be expressed merely by

• The sensitivity of the characteristics of the waves travelling within the considered struc-
ture with respect to the structural design (already determined in Sec.2).

• The sensitivity of the modal density with respect to the characteristics of the waves trav-
elling in it.

A similar approach can be followed for computing all the remaining necessary SEA
quantities.

3.4 Radiation efficiency sensitivity

In order to avoid the computationally inefficient frequencyand directional averaging of the

modal dependent radiation efficiency sensitivity
∂σrad,w (ω, φ)

∂βi
, it is practical to employ ex-

pressions introducing a direct wavenumber dependence ofσrad,w such as the ones exhibited in
[1, 8, 9]. For a generic periodic structure including discontinuities the assumption of sinusoidal
mode shapes is no longer valid, therefore the radiation efficiency should be calculated directly
from the PST derived wave mode shapes. The radiation efficiency expression as derived in [1]
can therefore be employed. For continuous structures, modeshapes of sinusoidal form can be
assumed in order to avoid any FE discretization errors in thesolution. The set of asymptotic
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formulas given in [9] can be used for computing the averaged wavenumber dependent radiation
efficiency of the panel as

σrad,w =
1

√

1− µ2
µ < 0.90

σrad,w =
Lx + Ly

πµκLxLy

√

µ2 − 1

(

ln

(

µ+ 1

µ− 1

)

+
2µ

µ2 − 1

)

µ > 1.05

σrad,w = (0.5− 0.15min (Lx, Ly)/max (Lx, Ly))
√

kmin (Lx, Ly) µ = 1

(21a)

(21b)

(21c)

with µ =

(

k2
x + k2

y

κ2

)1/2

, whereκ = ω/c is the acoustic wavenumber. In the region0.90 <

µ < 1.05 a shape preserving Hermite interpolation function is employed assuring the continuity
and double differentiability for the entire spectrum of theσrad,w expression. The sensitivity
expressions for the radiation efficiency of the panel can therefore be derived as a function of
the propagating flexural wavenumbers by Eq.21, while the interpolation function is used for
expressing the sensitivity ofσrad,w for the remaining spectrum.

4 NUMERICAL CASE STUDIES

In order to validate the exhibited optimisation approach, an asymmetric sandwich panel com-
prising two facesheets and a core is modelled in this section. The lower facesheet has a thickness
h1=1mm and is made of a material havingρm,1=3000e−9kg/mm3, E1 = 70GPa and a Poisson’s
rationv1=0.1. The upper facesheet has a thickness equal toh3=2mm and is made of the same
material as the lower facesheet. The core has a thicknessh2=10mm and is made of a mate-
rial with ρm,2=50e−9kg/mm3, E2 = 0.07GPa andv2=0.4. Three FEs are used in the sense of
thickness in order to model the structure. All computationswere conducted using the R2013a
version of MATLABr.

4.1 Structural design optimisation of the layered structure

As discussed in Sec.2, the criteria to be considered within the optimisation process of the me-
chanical and geometric characteristics of the panel are itsmass, stiffness and vibroacoustic
performance. The surface mass of the panelρs is chosen as a representative mass index, the to-
tal acoustic transmission coefficientτ is selected as the vibroacoustic performance index, while
with regard to the structural stiffness and for the sake of simplicity we will hereby assume
that we are solely interested in the sum of the static flexuralstiffnesses of the panelDxx, Dyy

expressed in the case of an isotropic composite panel as

ds =
2

3

lmax
∑

l=l1

(

Ql(z
3
l − z3l−1)

)

(22)

with zl the coordinate of the upper surface of layerl in the thickness direction. The design cost
functions, employed in order to decide the relation betweenρs, τ andds and the corresponding
induced design cost are exhibited in Fig.3.

Additional constraints (e.g. minimum axial and/or flexuralstiffness, maximum surface
mass e.t.c) can be considered. The constrained optimization problem is solved using Newton’s
method.
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Figure 3: Representation of the cost functions employed within the current optimisation pro-
cess. Cost function corresponding to: The acoustic transmission coefficientτ (−), The surface
mass densityρs (−−), The flexural stiffnessds of the panel (− · −)

4.2 Optimal parameters and discussion on the computationalefficiency

The optimisation problem is solved fork = 0.13rad/mm, and the optimal material and geo-
metric parameters that minimise the sum of the costs as presented in Fig.3 are computed as
follows

E1 = 80.9GPa, v1 = 0.12, h1 = 1.19mm, ρm,1 = 1647kg/m3

E2 = 110MPa, v2 = 0.37, h2 = 10.53mm, ρm,2 = 14.6kg/m3

E3 = 58.3GPa, v3 = 0.19, h3 = 1.74mm, ρm,3 = 1500kg/m3

It is noted that the only quantities laying on the limits of the predefined constraints which
could potentially further improve the overall structural performance are the Young’s modulus
of the core layerE2 as well as the mass density of the upper layerρm,3. Optimising the struc-
ture in a broadband frequency range can be done by averaging the optimal parameters over
the frequency range of interest or by introducing a weighting average for the frequency bands
that are considered more important (e.g. frequency of the external acoustic excitation). The
optimisation process was completed in 8 iterations each of which lasted approximately 78 sec-
onds, resulting in a total computation time of 630s. This suggests that a broadband structural
optimisation is feasible within a few hours, even with a conventional computing equipment.

5 CONCLUSIONS

In this work, the optimal mechanical and geometric characteristics for layered composite struc-
tures subject to vibroacoustic excitations were derived ina wave SEA context. The main con-
clusions of the paper are summarised as:

(i) An intense frequency dependent variation of the sensitivity of the propagating wave
characteristics has been observed as a function of the design of the composite structure. This
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also implies frequency dependence of the optimal design parameters.
(ii) Expressions for the first and second order sensitivities of the SEA quantities, namely

the modal density and the radiation efficiency of the composite panel were derived. The design
parametric sensitivity for each of the SEA quantities, as well as of the acoustic transmission
coefficient were found to be highly frequency dependent. Theimpact of the design alteration
on the vibroacoustic response was maximised in the vicinityof the acoustic coincidence range
for most parameters.

(iii) The suggested optimisation process is computationally efficient, allowing for a
broadband structural optimisation of a layered structure in a rational period of time, even with
the use of a conventional computing equipment.
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ABSTRACT

Active or passive damping treatments are usually applied to vibrating structures for noise and
vibration control by means of an adhesive layer. There is a high number of environmental pa-
rameters, such as temperature or frequency, which may influence the behaviour of the bonding
layer and modify the damping efficiency of the treatment. Therefore it is desired to take into
account the behaviour of that layer in the model.
The goal of this work is to present a procedure to characterise and model the adhesive layer. To
that purpose, an experimental-numerical method for inverse characterisation of the frequency
dependent properties of the glue is presented. The proposed inverse approach is a two-step
gradient-based method (BFGS) based on a fractional derivative viscoelastic model whose pa-
rameters are identified by minimising the difference between the simulated and the measured
dynamic response of a multi-layered structure assembled by bonding. In the finite element
model used for the inverse approach, the bonding layer is modelled by interface finite elements,
i.e. by bi-dimensional elements representative of the three-dimensional behaviour of the bond-
ing layer. The identification procedure is applied to the characterisation of a double coated
tape.
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1 INTRODUCTION

Noise and vibration control is a major concern in several industries and a lot of work has been
dedicated to the design of efficient active or passive damping treatments. Such treatments are
usually applied to the vibrating structure by means of an adhesive layer. Being generally made
of polymers, adhesive layers may have their properties influenced by a number of environmental
parameters, such as temperature or frequency. For instance, Figure 1 evidences the viscoelas-
tic behaviour of a double coated tape used for the assembly of sandwich structures, while the
epoxy adhesive has little influence on the dynamic behaviour of the assembled structure. A con-
sequence of the viscoelastic behaviour of the adhesive layer is that it may modify the dynamics
of the structure and affect the damping efficiency of the active or passive treatment applied (see
Figure 2 and [1]). In some cases, the adhesive layer must be modelled to have a predictive
model of the treated structure [2]. Therefore, there is a need for a characterisation procedure
to identify to frequency-dependent properties of the adhesive. DMA (Dynamical Mechanical
Analysis) measurements are classically used to determine the viscoelastic properties of a mate-
rial [3]. However, the bonding process generally has an important influence on the mechanical
behaviour of the bonding layer, which makes inverse characterisation a more appropriate way
of identifying the dynamic properties of the adhesive.
The goal of this work is to present a methodology to characterise and model the adhesive layer.
To that purpose, an experimental-numerical method for inverse characterisation of the frequency
dependent properties of the adhesive layer is applied. The proposed inverse approach is based on
a fractional derivative model whose parameters are identified by minimising the difference be-
tween the simulated and the measured dynamic response of a multi-layered structure assembled
by bonding. The fractional derivative model presents the advantage of describing accurately
the viscoelastic behaviour of many polymers with only four parameters. In the finite element
model used for the inverse method, the adhesive layer is modelled by interface finite elements,
i.e. by bi-dimensional elements representative of the three-dimensional behaviour of the bond-
ing layer.
The proposed characterisation and modelling procedure is applied to dynamic measurements of
a structure assembled with a double coated tape.

2 INVERSE CHARACTERISATION PROCEDURE

In this work, a four-parameter fractional derivative model is used to describe the frequency
dependency of the complex shear modulus of the adhesive:

G∗(ω) =
G0 +G∞(iωτ)α

1 + (iωτ)α
(1)

where G0 and G∞ are respectively the relaxed and unrelaxed moduli, τ is the relaxation time,
and α is a fractional parameter comprised between 0 and 1 which corresponds to the non-integer
order of derivation in the σ(t)− ε(t) relationships [4].
The goal of the inverse method is to identify the parameters of this viscoelastic model by min-
imising a cost function which is defined as the normalised mean square error between a mea-
sured and a simulated response. At each step of the optimisation, the simulated response is
computed from a finite element model with updated viscoelastic parameters. Consequently, if
the model contains a lot of degrees of freedom or if the optimisation procedure requires a lot of
iterations to converge, the inverse procedure may be time-consuming. The former occurs when
the thin adhesive layer is modelled with three-dimensional elements since it would require a
very fine mesh to avoid numerical problems related to the aspect ratio of the elements. There-
fore, interface finite element are used to model the thin adhesive layer. These elements, initially
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Figure 1: Measured frequency response
functions of an assemblage of two 0.26m
×0.026m ×1mm steel beams realised by ap-
plication of an epoxy adhesive (red) or a dou-
ble coated tape (orange), compared to the sim-
ulated response computed by a finite element
model neglecting the adhesive layer (blue).
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Figure 2: Measured frequency response func-
tions of a sandwich beam with a viscoelastic
core assembled by an epoxy adhesive (red) or
a double coated tape (orange), compared with
the simulated response computed by a finite
element model neglecting the adhesive layer
(blue).

developed for the modelling of thin constrained viscoelastic layers, consist of a mean surface
and a fictive thickness, assumed constant [5]. Moreover, in order to keep the overall number
of cost function evaluations reasonable, a gradient-based method (BFGS) is used to update the
viscoelastic model’s parameters and the gradient of the cost function is evaluated by a direct
differentiation approach [6]. Since the problem to be solved is not convex, an initialisation step
is introduced. It consists in optimising the model’s parameters by minimising a cost function
representing the difference between the measured and the simulated resonant frequencies of the
structure. In this way, the risk of converging towards a local minimum is reduced.

3 APPLICATION AND RESULTS

The previously described inverse identification method is applied to dynamic measurements of
a steel assemblage for the characterisation of a double coated tape (see Figure 1). Figure 3
shows the experimental response compared to the frequency response function computed with
the optimised parameters of the viscoelastic model:

G0 = 2.53 104 Pa, G∞ = 1.51 108 Pa, τ = 1.32 10−6 s α = 0.88, (2)

The corresponding master curves of the adhesive are plotted in Figure 4. The identified prop-
erties of the double coated tape allow a good representation of the dynamic behaviour of the
assembled structure. The slight overestimation of the damping on some modes may be due to
the fact that a four-parameter fractional derivative model may not be the most appropriate model
to describe the frequency dependency of the adhesive’s properties.

4 CONCLUSION

The inverse characterisation technique presented in this paper aims at determining the para-
meters of a fractional derivative model which describes the frequency-dependent mechanical
properties of adhesives. This can be used to improve the accuracy of a finite element model of
a damped structure by taking into account the assembly procedure, and thus better predict the
efficiency of the damping treatment.
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ABSTRACT 
Acoustic insulation represents a very important issue in many fields of acoustic engineering. This 
issue is generally assessed through one characteristic named sound insulation parameter or noise 
reduction level (NR).  
Research for materials with high mechanical-resistance-to-weight ratio promotes sandwich 
composite structures, but these ones present lower acoustic insulation performances than metallic 
homogeneous structures. Thus, the correct identification and assessment of the main transmission 
loss factor drivers for sandwich composite structures are essential to improve their acoustic 
isolation efficiency. 
In space industry, acoustic characterization of sandwich composite structures, such as launcher 
fairing, is a key point for payload and equipment acoustic comfort assessment, when facing severe 
broadband environment during lift-off phase. 
In this paper, the overall approach of acoustic specification to payload is detailed with a 
particular attention given to the noise reduction level estimation of the fairing structure. The first 
part will present the Vibroacoustic logic used for acoustic specification. Then, the method 
employed for fairing exterior acoustic field prediction will briefly be described. Next, the 
modelling of the composite structure depending on the frequency domain is studied. Finally, the 
methods used for Vibroacoustic computations as well as comparison with measurements are 
exposed. 

KEY WORDS: Vibroacoustic LF/HF, Composite structure, Noise Reduction. 
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1 INTRODUCTION 

In the spatial industries, the launch vehicles are subjected at lift-off and during flight ascent to 
severe acoustic and aero acoustic environment. This environment is broadband and random and 
covers a large band of frequency, in the low and high frequency regimes (15-2800 Hz). Electronic 
equipment and satellites are consequently excited and the induced vibrations must be predicted 
before flights, in order to be sure that they can endure the induced loads without any damage. 

This is why, it is essential to have methods that compute the equipment vibroacoustic 
response over all frequency ranges of concern. The fairing noise reduction level is an important 
parameter for payload comfort. 

The first part is dedicated to present the logic used to cover the two frequency domains. 

2 VIBROACOUSTIC LOGIC 

Acoustics covers several dynamic environment of the launcher’s life: 

• Engine generated acoustic loads during lift-off, 
• Aerodynamic loads during ascent, 
• Specific acoustic noise excitations (like venting). 

The spectra of acoustic environments cover a wide frequency range. Predicted 
environments are generally limited to frequencies below 10 kHz for manned structures and below 
2800 Hz for general structures. 

For the fairing, payload acoustic environment is defined up to 2800 Hz. 
This wide frequency range load can damage structures in low frequency regime, large area 

structures directly impacted by acoustics and equipment items that generally have their first 
modes in Mid/High Frequency. Thus it is necessary to compute the System response all along the 
frequency range. 

Vibroacoustic analyses are divided into two domains along the frequency spectrum: 

• Low Frequency [15-200Hz], where the modal density of a given component 
(number of mode per octave band) is quite low (less than 7 modes per octave 
band). FEM method can be performed while the number of Eigen modes is quite 
low, 

• High Frequency [50-2800Hz], where the modal density of a given component is 
too important to look at each Eigen mode in particular. In this frequency range, a 
statistic method must be used. This method is based on transfer of energy between 
the components (Statistical Energy Analysis, see [2]). 

Vibroacoustic overall logic for computation of response of sub-components is defined 
according these two approaches with an overlap between the two domains on the frequency range 
[50-200Hz], when possible. It is possible in the case of big launchers Fairing of sandwich 
construction, as many modes are present in the 125 Hz octave bands. This overlap is used to 
cross-check the two methodologies in order to validate the modelling. 

With the Maximum Expected Environment computed with these two approaches and a 
Qualification Margin policy applied, a standard Random Qualification level is chosen to envelope 
those levels. 
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Acoustic logic can be summarized with the following diagram: 

  
Figure 1. Vibroacoustic logic for payload interior noise specification 

3 PREDICTION OF FAIRING EXTERIOR ACOUSTIC ENVIRONMENT  

The acoustic loads predictions on space vehicle generated by the interaction of jet thrusters with 
the launch pad require models base on experimental data, as numerical methods are not available 
for predicting supersonic jet noise in the presence of waterfall. Simulations are generally validated 
using reduce scale tests. 

In that frame, Airbus Defence and Space homemade software “BRUITJET” based on tests 
realised in Russia at TSNIIMASH enables to predict wide range acoustic environment during lift-
off phase, see [3]. 

3.1 Method 

To represent this interaction, different noise regions are identified. Each of these regions is 
represented by a system of independent acoustic sources with their own acoustic power and 
spectrum. The launcher is not modelled, only the free field is computed. 

The acoustic field is computed in the symmetrical plan of the duct and the jet. The overall 
level as well as the spectrum features of the field is obtained by summation of contributions of the 
different sources. 

Hiding and reflections conditions of sources due to the geometry of the duct are 
established by geometrical conditions. Their power, radiation and directivity come from many 
experimental data and literature, [3].  

Finally, the entrance data for the computation are geometrical data of the studied launch 
pad configuration and the thermodynamic properties of the jet at exit nozzle. 

The Ariane 5 launch pad is presented in the following figure. It is composed of two closed 
duct to evacuate boosters’ jet as well as on closed duct for the Vulcain engine. 
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Closed duct enable to put away jet sources to reduce acoustic environment on the 

launcher. Water injection systems on the launch pad table and inside ducts are also present 
ignition phase 

 
 

 

 

 

 

 

                                        Figure 2. Ariane 5 launch pad 

3.2 Theoretical aspects 

To solve the acoustical problem, the jet is decomposed in different regions as shown in the figure 
here below, ref [3]. 

 
 
 
 
 
 
 
 
 
                       
 
              Figure 3. Sketch principal [closed duct] 

The regions for the acoustic field computation are detailed here below: 

• Free jet region (between exit nozzle and hole) : the acoustic field is modelled as 
punctual sources, 

• Region of strong interaction with the hole, 
• Region of the duct entrance (between hole and deflector) : the acoustic field is 

modelled by a distribution of decorrelated sources, 
• Region of the duct exit, 
• Reflected acoustic field modelled through the images sources method (inside duct, 

deflector, for open duct). 

There are different types of noise through the frequency ranges: 

• Low frequency noise generated in the region of the duct exit, 
• Mid frequency noise mainly coming from the jet/ground interaction, 
• High frequency noise coming from free jet and acoustic waves reflections on the 

launch pad. 
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4 FAIRING VIBROACOUSTIC CHARACTERISATION  

The vibroacoustic characterisation of the fairing is done by two computations. One 
performed for the low frequency domain using modal basis and one for the high frequency 
domain using SEA (Statistical Energy Analysis).  

The low frequency study is mainly used here to understand the PSD of acoustic pressure 
dispersion inside the cavity. Otherwise, for internal noise specification inside the fairing at the 
beginning of a new launcher definition, SEA method is used, ref [4].  

4.1 5.1 Low frequency domain 

The analysis is performed in two steps. First, the modal basis is computed with MSC-NASTRAN 
FEM software and then Airbus D&S Low Frequency vibroacoustic software LASCAR BF is 
used.  

The FEM model used for vibroacoustic study is the same as the one used for static 
analysis with mass data added. Fairing sandwich composite structure is then modelled in detailed 
with NASTRAN PCOMP card that defines the properties of an n-ply composite material 
laminate. The sandwich of the fairing is composed of carbon and aluminium mainly due to weight 
constraints.  

A picture of the FEM model is shown in the following picture. Payloads volumes are 
included under the fairing. Tetrahedral elements are used for fluid meshing. 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 4. Fairing FEM model  

The fairing low vibroacoustic analysis was done with the Airbus D&S software LASCAR 
BF up to 200Hz using a critical damping loss factor of 2% for the structure and experimental data 
using reverberation time so as to infer an equivalent modal damping factor for the fluid to take 
into account the acoustic protection. The acoustic excitation is supposed to be defined as a diffuse 
field excitation. 

LASCAR BF computes the response of a structure under a random excitation using a 
modal basis coming from NASTRAN (sol 103) and an acoustic excitation matrix in Pa²/Hz, [4]. 

The PSD excitation is assumed to be homogeneous on the wetted area so as the excitation 
matrix can be decomposed as a product of an auto spectrum function simply depending of the 
noise entrance level and a correlation function depending of the type of excitation applied to the 
structure. 
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The excitation can be written as followed, 
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Since the excitation is assumed to be homogeneous, it can be simplified in, 
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where the correlation function C in the case of a diffuse field is analytically known as, 
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At the highest frequency of study, 200Hz, the distance of the diffuse field correlation is 
two meters supposing that two points are correlated if the correlation function is at least equal to 
0.1. This hypothesis enables to increase the size of the acoustic excitation meshing compared to 
the structural meshing, hence reduce times computations. 

Joint-acceptance function is calculated following, 

                  
(4) 

with : 

A  : the total wetted area, 

  : the modal shape of the mode r at node i, 

 : the equivalent area associated with node i,  
 : number of excitation nodes, 

 : the pressure power spectral density between nodes i and j at frequency ω. 

This function simply described the efficiency of the acoustic field on the structural modes. 
Finally, the response of the structure is computed. For root mean square acceleration, the 

equation can be written as followed, 
 (5) 

with : 

irΦ  the modal displacement of the mode r at node i, 
 

, the transfer function of the mode r supposing that modes 

are normalised by the generalised mass. 
In the case of effort and stress, equations are similar; the modal displacement is simply 

replaced by modal effort and modal stress. 
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The synoptic of LASCAR BF software is summed up in the following sketch. 
 

 

 

 

 

 

 

 

 

 

 

       Figure 5. Synoptic of LASCAR BF  

4.2 High frequency domain  

In the High Frequency domain, the acoustic level is estimated by the SEA (Statistical Energy 
Analysis) with the in-house Airbus DS software SEALASCAR, ref [4]. 

SEA is a statistical method based on the exchange of energy between sub-components. A 
sub-component is a sub-division of the structure and the geometry of each sub-component is 
approximated by a simplified geometric shape (plate, cylinder, cavity etc...). 

This method can be applied when the modal density of the structures and cavities is high 
(7 modes per octave band at least). 

SEA method is not used to provide absolute acoustic levels, but in order to characterize 
the impact of a design change in the launcher.  

The SEA method is based on a statistical analysis on transferred energy between sub-
systems. There is no dumping like in FEM method but energy dissipation by the sub-systems, 
called dumping loss factor. 

For structures, the dumping loss factor can be expressed either by a fixed value (for 
instance 1%) or by the following empirical relation. It yields, ref [4]: 

0

0
Bf

A
, (6) 

where f is the central frequency of the considered octave band. A0 and B0 are coefficients 
different in the case of equipped or non-equipped structures and coming from flights and acoustic 
tests experience.  

In SEALASCAR, the calculation of the modal density of sandwich structures is based on 
the theory of Erickson, where the shear of the core is taken into account, [5]. 

For cavities, the damping loss factor is : 

V
SC

c ω
α

η
4

0= , (7) 

where C0, S and V are respectively the sound speed, the surfaces and the volume. α is the 
Sabine absorption coefficient, given by test. In the computations, experimental data using 
reverberation time so as to infer an equivalent modal damping factor for the fluid is used. After 
having described the different approaches Airbus D&S used to compute the noise inside the 
fairing, NR levels are compared with ground test and flight measurements. 
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5 COMPARISON OF SIMULATIONS WITH FLIGHT AND GROUND TEST 
MEASUREMENTS 

5.1 Comparison of simulations with ground test measurement – Empty fairing 

This section is dedicated to the comparison of results coming from low/high frequency 
simulations with results of ground test performed at the reverberant chamber of ESTEC regarding 
the “Noise Reduction” NR in dB per octave band. 

The NR is computed as the difference between the external noise and the internal noise 
inside the fairing.  

The internal noise reduction level is calculated as the average of acoustic power inside the 
overall fairing volume. 

 
        Figure 6. Comparison between simulation and ground test 

Measurements and simulations are well correlated after 40Hz. Low frequency estimation 
and high frequency one have an overlap in the frequency range [40-100Hz] with maximum 
differences of 2dB. 

Added to this, differences observed before 40Hz are mainly due to the assumption of 
diffuse field which is not respected in measurements due to cutting frequency of the reverberant 
room (modal behaviour). 

After having compared simulation with reverberant room measurements for empty fairing, 
flight configuration is studied. 

5.2 Comparison of simulations with flight measurement – Fairing with payloads volumes 

The objective of this section is to compare noise reduction levels computed by simulations with 
measurements coming from flight 215 L570 [fairing with payloads] and ground test presented 
before [empty fairing]. 

The following figure presents the upper part configuration for the flight 215 (570) 
composed of a long fairing and a SYLDA family D. The fairing is covered by an acoustic 
protection. The payloads inside were manufactured by Space Systems / LORAL and I.S.R.O.  

The fairing internal pressure during flight is measured by two sensors. For the external 
noise a sensor located on a tour on the launch pad one for each Ariane 5 flight is used. 

However, to better represent the external noise that load the fairing; acoustic filed has been 
measured during the experimental Ariane 5 flight 164 L521 using sensors outside the fairing.  

2dB 
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To take into account exterior noise dispersion between flight 570 and 521 a correction 

computed as the ratio between sensors located on the tour is applied. 
 

 

 

 

 

 

 

 

 

  Figure 7. Fairing configuration for flight 215 L570 

The next plot present the noise reduction level estimated during with flight measurements 
to see the influence of the payload volume inside the fairing. 

                    
           Figure 8. Comparison between flight and ground test measurements 

The following plot compares low frequency simulations with flight. The two 
measurements fit quiet well. Differences are not only due to the payload volume that modify 
modal behaviour of the fluid but also due to fairing excitation.  

The next plot shows that using two types of correlation, simulations can covered the noise 
reduction measured in flight. 

The blue curve represents the noise reduction level coming from low frequency simulation 
using a rocket engine noise correlation instead of a diffuse field one. This correlation is coming 
from [1] and can be seen as a progressive wave coming from jet engine noise in longitudinal and 
radial direction. 

2dB 

Sensor M5BA532 

Sensor M5BA542 
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Figure 9. Comparison between flight and simulations (for two type of correlation) 

Engine rocket noise correlation match well with flight in low frequency (f<30Hz) and for 
frequency superior to 30Hz, diffuse field correlation fit well with flight. The flight noise reduction 
level is framed with simulations. 

6 CONCLUSION 

This paper is focus on our capability to predict noise reduction level for a space sandwich 
structure of major importance for payload comfort.  

It has been firstly shown that low frequency method using finite elements and high 
frequency ones are able to well represent the sandwich structure and fit with reverberant room 
measurements for an empty fairing. 

Then, noise reduction level measured in flight has been compared to low frequency 
simulations for configuration flight fairing. It has been shown that two types of correlation, the 
rocket engine noise for frequencies less than 30Hz and diffuse field for frequencies above are able 
to frame the flight. Indeed, rocket noise correlation during lift-of phase can be seen as a mix 
between progressive waves added with a diffuse field.  

Work is still in progress on that topic to understand what is the part of those two 
correlations model is in order to improve low frequency simulations and payloads acoustic 
environment for new launcher. 
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ABSTRACT 
 

Tire debris impact is a recurring event in the aircraft lifetime, which can potentially affect its 
structural integrity. In this work, delamination and debonding failure mechanisms are investigated in 
order to define a robust modeling method applicable at aircraft subcomponent level. 
A standard cohesive element available in the explicit code Abaqus is used to represent ply interface 
and bondline failure. Due to finite element model size limitation driven by industrial operability, 
relatively large cohesive element size was used. A calibration exercise based on an existing knock-
down method was conducted to insure correlation at coupon levels such as DCB, ENF and MMB. 
The calibrated methodology confidence was assessed upon three different levels of structural 
complexity ranging from skin panel to wing box lower skin based on Airbus building block approach 
philosophy. 
Numerical predictions for delaminated and debonded areas have shown a satisfying level of 
correlation to test in terms of predicted damage and overall structural behavior. Such methodology 
can be used to have a general assessment on post-impact structure integrity. 
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ABSTRACT

Composite materials are widely used in the aerospace industry, for their low mass and high
stiffness, however, these characteristics tend to increase noise transmission. Sound protection
must therefore be added, in the form of porous material layers. Uncertainties may affect both
the structural and sound package parameters. It is therefore important to assess the influence
of these uncertain parameters on the sound transmission properties of the assembly. The sound
transmission loss through a composite plate-foam assembly is first computed with the transfer
matrix method. The effect of uncertainty of several parameters such as the porosity, flow resis-
tivity and mechanical parameters is then analysed with the FAST (Fourier amplitude sensitivity
test) method. The effect of adding a thin screen at the interface between the porous and air is
also investigated.
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1 INTRODUCTION

Noise transmission is often a major concern in the industry. Composite structures are known to
have lower acoustic performance than their metallic counterparts, but their high stiffness to mass
ratio makes them more and more used in aerospace applications. On of the most frequently used
construction is the sandwich one, with stiff skins constraining a softer, shearing core. Analytical
models of sound transmission have been proposed in the literature [1, 2]. Some kind of acoustic
treatment is then needed to enhance the transmission loss. Porous materials such as fibreglass
are commonly employed for this purpose, which can be modelled with the Biot model [3, 4].
Sometimes a thin screen can be glued to the porous material to protect it on the transmission
side.

Some variability always occur when modelling the transmission loss of structures with
noise treatment, due either to uncertainty in the parameter measurement, or to design latitudes
allowing for optimisation. It is therefore of utmost importance to assess the effect of this vari-
ability on the model output, and estimate the sensitivity of it with respect to each uncertain
parameter. Several methods have been proposed for this purpose, one of the most popular being
the evaluation of Sobol indices [5]. The Fourier Amplitude Sensitivity Test (FAST) method
[6]has been proposed to accelerate the computation of these indices and already used success-
fully for acoustic and poroelastic applications [7].

We propose here to use the (FAST) method to investigate the effect of several parameters
of a plate-porous assembly such as the one shown on figure 1. This paper is structured as
follows. The FAST method is first presented in section 2. A model of transmission loss through
infinite plane assemblies of composite a porous materials based on the transfer matrix method
is presented in section 3. Finally some results are discussed in section 4.

Sandwich plate

Porous layer

Thin screen

Incident
 sound

Transmitted
sound

Figure 1: View of the studied configuration. The influence of the presence of a limp screen on
the transmission side is studied

2 GLOBAL SENSITIVITY ANALYSIS: THE FAST METHOD

In the analysis of variance technique, a parameter’s influence on the model output is quantified
by the impact it has on the variance in the given design range. In the following development, a
generic mathematical model is considered. A model is a real valued function f defined overKn,
whereK = [0, 1]. With appropriate scaling and translations, any model defined over continuous
ranges of parameters can be represented that way.

For a given model f linking input parameters x = (x1, ...xn) to a scalar output y = f(x),

2
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there exists a unique partition of f so that

y = f(x1, x2, ...xn) = f0 +
n∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) + ...+ f1...n(x1, ..., xn) (1)

provided that each function fI involved in the decomposition has zero mean over its range of
variation. The decomposition given by equation 1 is called the Hoeffding decomposition or
high order model representation (HDMR) [8].

For a given set of indices I = {i1, . . . , in}, the partial variance is therefore the variance
of fI

DI =

∫
K|I

fI(xI)
2dxI (2)

the sensitivity index relative to the set I is expressed as the ratio of the variance of the function
fI to the total variance of the model:

SI(I) =
DI

D
. (3)

The computation of all the 2n sensitivity indices is needed to represent completely the
model, however this becomes quickly a very costly task in terms of computational time, as they
have to be evaluated by numerical integration. However, most information about a parameter’s
influence can be found in the first-order sensitivity index and the total sensitivity index, which
can be computed more efficiently with the FAST method.

For a given parameter i ∈ [1, n], the main effect (ME) is then the sensitivity index
relative to the 1-dimensional function fi.

The first-order index represents the share of the output variance that is explained by the
considered parameter alone. Most important parameters therefore have high ME, but a low ME
does not mean the parameter has no influence, as it can be involved in interactions.

The idea of the FAST method is to avoid the evaluation of the n-dimensional integrals
needed for the computation of the fi functions, and replace them by a single 1-dimensional
integral along a space-filling curve in the design space. This curve is defined so as to be periodic
with different periods relative to each parameter. Saltelli [9] propose the sampling function
defined by:

xi =
1

2
+

1

π
arcsin (sin (ωis+ ϕi)) (4)

The frequencies ωi are integers chosen so as to minimize interference between parameters[10].
The frequencies are said to be free of interference up to order M if all linear combinations

n∑
i=1

αiωi 6= 0 (5)

where αi ∈ Z and
∑n

i=1 |αi| < M .
As all frequencies are integers, the resulting function is 2π-periodic with respect to

variable s. The sampling is then done using N > 2ωn + 1 samples in the [0, 2π] interval.
Calling yk = f(xk) the model output on each sample, the discrete Fourier transform ŷk can be
computed.

The total variance of the function in the design space is computed with Parseval’s theo-
rem as

D =

∫
K

f 2(x)− f 2
0dx ≈

N∑
k=1

y2k =
N∑
k=1

ŷ2k (6)

3
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The contribution of parameter i will then be:

Di =
M∑
k=1

ŷkωi
(7)

3 THE SIMPLIFIED TRANSFER MATRIX METHOD

The sound transmission loss through a multilayered structure composed of plates, air gaps and
poroelastic materials can be computed with the transfer matrix method (TMM). This method
was first proposed by Brouard et al. [11] and extended by Allard and Atalla [4]. We shall use
here a simplified version presented by Hu [12] valid for limp poroelastic materials. The acoustic
behaviour of the structure can be represented with only the fluid pressure p and normal velocity
v as state variables. These two variables are defined in each point in the fluid layers, and on
each side of the solid layers. Each layer can be represented by a 2 × 2 matrix linking the state
variables on one side to those on the other side, and a global transfer matrix can be obtained by
multiplying all these matrices together. The transfer equation then reads:(

pL
vL

)
=

(
T11 T12
T21 T22

)(
pR
vR

)
, (8)

where indices R and L stand for right and left sides of the structure. Waves on each side can be
decomposed in positive- and negative-going waves, which can be written :

pR = p+R + p−R and pL = p+L + p−l . (9)

According to the pressure-displacement relation in the fluid, the normal velocities are:

vR = Y0(p
+
R − p

−
R) and vL = Y0(p

+
L − p

−
l ), (10)

where Y0 = cos θ/ρ0c0 is the characteristic admittance of the surrounding fluid.
This leads to rewriting equation 8 asp

+
L + pL = T11(p

+
R + p−R) + Y0T12(p

+
R − p

−
R)

p+L − pL =
T21
Y0

(p+R + p−R) + T22(p
+
R − p

−
R)

. (11)

We will be studying transmission of a plane wave incident from the left side, whose
interaction with the structure creates a reflected wave into the left side, and a transmitted wave
into the right side. In that case, no negative-going wave will propagate in the right side. The
acoustic transparency is defined as the ratio of transmitted to incident acoustic intensities, which
reduces to

τ =

∣∣∣∣p+Rp+L
∣∣∣∣2 (12)

in the case of identical fluids on each side of the structure. Solving the system in equation 11,
we get

τ(ω, θ) =
1

4

∣∣∣∣T11 + T12Y0 +
T21
Y0

+ T22

∣∣∣∣2 . (13)

The diffuse field transmission loss is then obtained by performing a weighted average
of the transparency over an angular range. The full range [0;π/2] is retained here. In that case,
we get the diffuse field transparency:

τd(ω) = 2

∫ π/2

0

τ(ω, θ) sin θ cos θdθ. (14)

4
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The transmission loss (TL) is then defined as

TL = −10 log10 τd. (15)

The transfer matrices for a sandwich plate and a limp poroelastic material are derived in
the following subsections. Due to the forced nature of the excitation, the transverse wavenumber
kt = ω

c
sin θ and the pulsation of the incident wave ω are conserved across the whole system.

3.1 Transfer matrix of a sandwich plate

The transfer matrix of a general plate can be obtained from its constitutive equation in presence
of forced loads. When excited by a plane wave with frequency ω, the plate will vibrate and
radiate one acoustic wave on each side, respectively reflected and transmitted. The constitutive
equation can be put under the general form

Zv = pL − pR, (16)

where Z, a linear operator, is the impedance of the plate. The sound field on the left side of the
plate is pL and on the right side it is pR.

The continuity of normal speed between the surrounding fluids and the plate imposes
vL = vp, hence (

pL
vL

)
=

(
1 Z
0 1

)(
pR
vR

)
(17)

For a sandwich plate, the constitutive equation is given by Mead [1], with five main
parameters, namely skin bending stiffness Dt, overall bending stiffness B, damping η, surface
mass m and shear stiffness g. After minor corrections, this reads:

Dt(1+ iη)∇6w−g(Dt+B)(1+ iη)∇4w+m
∂2w

∂t
−mB

N

∂2

∂t2
∇2w = (∇2−g)(pL−pR), (18)

where w = v/iω is the normal displacement of the plate. In the considered frame where a
forced wave is imposed on the plate with a wavenumber kt = ω

c
sin θ, the spatial derivative

operator∇ can be replaced by −ikt. This leads to the following expression of the impedance

Z(ω, θ) =
Dtk

6 + g(Dt +B)k4 −mω2k2 −mgω2(1− ν2)
iω(k2 + g)

. (19)

For sandwiches made of isotropic materials and identical skins, the skin bending stiffness is
Dt = Eh3s

6(1−ν2) the overall bending stiffness is B = Eh2chs(1 + hs
hc

)2/2 and the shear stiffness is

g = Ghc

(
1 + hs

hc

)2
. This expression is equivalent to that of a thin plate if the shear stiffness is

infinite.

3.2 Limp poroelastic model

Poroelastic materials can be modelled with the Biot-Allard model, taking into account wave
propagation in the fluid and solid phases. However, if the material is especially limp, like
fibreglass, it can be possible to neglect the solid part and model it as an equivalent fluid with
complex and frequency dependent parameters. The wave propagation equation in the porous
layer reduces to one scalar equation[4]

∆p+
ρ̃limp

K̃eq

ω2p = 0, (20)

5
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where ρ̃limp is the equivalent density and K̃eq the equivalent bulk modulus of the fluid repre-
senting the porous material. These two quantities are complex and frequency dependent. Their
expression is given in chapter 5 of reference [4]:

K̃eq =
γP0

φ
(
γ − γ−1

K

) (21)

(22)

ρ̃limp = −
ρ20 − 1

φ2
(ρ1 + φρ0)(

iB
ω

+ α∞φρ0)

ρ1 − 2ρ0 + φρ0 + 1
φ2

( iB
ω

+ α∞φρ0)
(23)

where the coefficients K and B can be expressed as

K = 1 +
8µ0

iωPrΛ2
thermρ0

√
1 + iω

PrΛ2
thermρ0

16µ0

(24)

(25)

B = σφ2

√
1 + 4iω

α2
∞µ0ρ0

(σΛviscφ)2
. (26)

The parameters Pr, µ0, P0 and ρ0 are respectively the Prandtl number, the dynamic viscosity,
the bulk modulus and the density of air, whose reference values at 20oC are given in table 1.

The porous material is described by six characteristic parameters, namely the porosity φ,
the flow resistivity σ, the static tortuosity α∞, the viscous and thermal dissipation characteristic
lengths Λvisc and Λtherm, and the in vacuo skeleton density ρ1.

Parameter description unit value
Pr Prandtl number - 0.71
µ0 dynamic viscosity Pa.s 1.845 · 10−5

ρ0 density kg.m−3 1.21
P0 reference pressure Pa 101325

Table 1. Reference parameters for air at 20oC.

The complex wavenumber of the wave propagating in the equivalent fluid is, according
to equation 20:

k = ω

√
ρ̃limp

K̃eq

, (27)

and the normal component is kn =
√
k2 − kt.

The transfer equation between two points inside the equivalent fluid separated by a dis-
tance h then writes:(

pL
vL

)
=

 cos(knh) iω
ρ̃limp
kn

sin(knh)

i
kn

ωρ̃limp
sin(knh) cos(knh)

(pRvR
)
. (28)

The previous equation is valid for the wave inside the fluid. When coupled to another
medium, the continuity of normal speed should account for the porosity of the material. If the
other material is a plate or the surrounding air, this conditions reads

φvporo = vm, (29)

6
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where vm is the normal velocity inside the other medium. The complete transfer matrix of the
porous layer then writes:

Tporo =

(
1 0
0 φ

)
Tp

(
1 0
0 1

φ

)
. (30)

4 RESULTS

The transmission loss of a system composed of a honeycomb panel and a fibreglass layer has
been studied. This was modelled with the analytical model described in section 3, where the
global transfer matrix is

Tbare = TsandwichTporo, (31)

where Tsandwich is given in equation 17 and Tporo in equation 30. A second configuration in
which a thin limp screen is glued to the porous layer at the interface with the receiving cavity is
studied. In this case, the transfer matrix is

Tscreen = Tbare

(
1 iωmscreen

0 1

)
. (32)

In both cases, the diffuse field transmission loss is computed with equation 15 between 100Hz
and 10kHz. All constant parameters are summarised in table 2. We would like to study the
effect of five parameters on the overall transmission loss in the two configurations, namely 2
parameters of the sandwich, core shear modulus and damping coefficient, and 3 parameters of
the fibreglass layer, its porosity φ0, flow resistivity σ and viscous characteristic length Λvisc.
The two characteristic lengths Λvisc and Λtherm are usually correlated, which will be taken into
account by taking Λtherm = 2Λvisc. The variation ranges of these five parameters are shown
in table 3. They are chose as realistic considering both uncertainty in measurement and some
latitude in design.

Results of the FAST analysis are presented in figure 2 for the bare case and 3 for the
case with a screen. The sensitivity indices of each parameter are presented as proportions of the
standard deviation. Some conclusions can be drawn for both cases: none of the considered para-
meters is important in low frequency, while the dominant parameter in HF is the viscous length,
which accounts also for the thermal characteristic length, as they are considered proportional.
The parameters of the structure (G and η) have no significant incidence on the transmission loss
in their considered variation ranges. This is due to the fact that the considered frequency range
is well below the coincidence frequency, which occurs around 19kHz.

The transmission loss variation range is shown for the two cases in figure 4 for the two
cases. It can be seen that the addition of a thin screen reduces the loss in low frequency, but
improves in much more in high frequency. A mass-fluid-mass resonance phenomenon appears
in both cases, where the TL is lower around 500Hz for the screen case, and around 1kHz for
the bare case. In both cases, flow resistivity σ is the dominant parameter between 1000 and
1500Hz. This phenomenon is due to the mechanical resonance of the cavity filled of porous,
analogous to what happens in a double-plate system.

The main difference between the two cases in terms of sensitivity is the preponderance
of porosity between 400 and 1200 Hz when a screen is placed after the porous material. The
overall effect of the screen is globally to increase the transmission loss above 650 Hz, and
reduce the variability of the TL with respect to the investigated parameters.

5 CONCLUSION

A model of transmission loss through composite sandwich plates with attached limp poroelastic
materials based on the transfer matrix method has been proposed in this paper. Its sensitivity

7
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Parameter description unit value
E Skin Young modulus GPa 47
ν Poisson ratio – 0.1

hskin Skin thickness mm 1
hcore Core thickness mm 12.7
m Sandwich surface density kg.m−2 8
α∞ Tortuosity – 1.25
ρ1 Porous in vacuo density kg.m−3 5.5

Λtherm Thermal characteristic length µm 2Λvisc

hporo Porous thickness mm 50
mscreen Screen surface density kg.m−2 0.2

Table 2. Constant parameters considered in this study

Parameter description unit min. value max. value
G Shear modulus of the sandwich’s core MPa 20 40
η Structural damping – 10−3 10−2

φ0 Porosity – 0.85 0.99
σ Flow resistivity kN.m−4.s 10 30

Λvisc Viscous characteristic length µm 25 75

Table 3. Variable parameters considered in this study
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Figure 2. Sensitivity indices in the bare configuration

to several parameters is studied with the FAST method, which allows to efficiently estimate the
sensitivity indices of parameters subjected to uncertainty in a model. However the uncertainty
level of the parameters should be known before the analysis, in the form of a variation range or
a probability distribution.

In the considered case, it has been found that the most important parameters in high
frequency are the viscous and thermal characteristic lengths, as well as the flow resistivity in
an intermediate frequency range around the mass-fluid-mass resonance. The presence of a light
thin screen on the transmission side allows to efficiently increase the TL in high frequency,
though lowering the mass-air-mass resonance, which leads to slightly reduced performance in
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Figure 3. Sensitivity indices in the screen configuration
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Figure 4: Transmission loss variability in the two configurations (average value ± standard
deviation). Red: bare case ; blue: thin screen.

low frequency. In low frequency, the overall variability of the parameters stays low, well below
1dB, because none of the investigated parameters have an effect on the mass of the system, and
the effect of poroelastic materials is usually rather weak in low frequencies.
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ABSTRACT

In the context of lightening automotive vehicles to reduce the greenhouse gas emissions, one
solution considered is to use composite materials. The introduction of such orthotropic ma-
terials can yet significantly modify the automotive design due to the new distribution of local
stiffness. These modifications may result in very different vibro-acoustic behaviours and there-
fore different NVH performances. Indeed, the panels can participate more greatly to the overall
stiffness of the car, reducing the ratio of frame in the architecture and therefore the number of
assemblies. The objective of this work is to bring out the concept of structural contrast and
define the associated indicator. This indicator suitable to any kind of material ensures the level
of performance requested by the stakeholders.
Several strategies can be used to highlight the vibrational contrast of a mechanical structure
made of frame and panels. In this work, this concept is investigated by using an analytical
model made of a plate and five rectangular section beams. This model allows an easy intro-
duction of the detailed coupling expressions at the interface between a frame and panels. The
system is studied using a modal approach. The computations of point mobilities allow building
maps which are representative of the vibrational behaviour of the structure. On such a map, the
areas corresponding to the presence of stiffeners (frame) can be identified. A histogram con-
taining the values of point mobilities is then build and allows the definition of different classes
of behaviour. The latter define the stiffness contrast of the structure, which is evaluated by a
contrast indicator.
An extension of this approach is presented on two industrial cases of roof panels. The first
case is based on a steel roof, with conventional design architecture (frame and panels). The
second case is based on an innovative roof, made of composite materials. The developed ap-
proach allows to locate the stiffeners and to highlight their contribution to the overall stiffness
of the structure. Moreover, the contrast indicator identifies the areas requiring an addition of
stiffeners to ensure the required level of performance. Thus, for several frequency ranges the
calculated contrast allows one to assess the vibrational performance of a mechanical structure,
whatever the used material.
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ABSTRACT 
 

Thin tubes made from steel composite are experimentally investigated showing their energy 

absorption capacity during dynamic plastic buckling. In fact, steel-steel composite cylindrical 

tubes are characterized by a specific outer surface heat treatment. Only 15% of tubes outer 

surface are heat treated for a certain depth along the tube thickness with different 

geometrical shapes. The patented idea

 aims to enhance the impact resistance of tubular 

structures not only through the treated area but especially through its geometry.  

A key point emerging from this study is that the structure impact response (i.e., the plastic 

flow mechanism and the absorbed energy) is influenced by the loading rate coupled with the 

heat treated configuration. To study the geometry effect of carburizing treated zone, several 

shapes are tested :three different ring-shape configurations (2, 4 and 6 rings), a configuration 

with three uniformly distributed vertical strips parallel to the axis of the tube and finally one 

treated helically case with tilt angle of 45°. All the experimental tests are carried out using a 

dynamic drop mass bench of a maximum impact velocity of 10 m/s. 

The obtained results show the enhancement in the energy absorption, notably in the case of 4-

ring (and then helically case with a tilt angle of 45°) is higher than 78% in comparison with 

the non-treated tube.  

 

Keywords: plastic buckling; surface heat-treatment, dynamic loading; energy absorption 

. 
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1 INTRODUCTION 

Adopted since several decades by different transport vehicles, the thin-walled tubular structures 

are widely used as a fundamental tool in developing a passive safety concept, i.e., energy 

dissipating devices based on large plastic deformations (e.g., Abramowicz and Jones, 1986; 

Johnson and Reid, 1986, Jones, 1998; Al-Ghamdi, 2001; Abdul-Latif, 2000; Baleh and Abdul-

Latif, 2007, Abdul-Latif and Baleh, 2008, Abdul-Latif, 2011; Menouer et al., 2014). 

Understanding the behavior of collapsed structures and the materials behavior is essential to asses 

the energy absorption. Different studies reveal that the crushing process remains sensitive to 

several key parameters like magnitude, type and method of application of loads, strain rates, 

deformation or displacement patterns and material properties (Baleh and Abdul-Latif, 2007; 

Karagiozova and Jones, 2000; 2001).  

Under dynamic loading, the axial crushing of cylindrical tube is an effective shock absorber 

device and is highly dependent on inertial effects of strain rate (Karagiozova, 2000, 2001; Jones, 

2003). As a main subject of this work, the plastic buckled tubes can dissipate a large amount of 

energy due to the available long stroke per unit mass and stable average load in the entire collapse 

process (Yasui, 2000). The bending and stretching strains combination and its progress along the 

buckled tube guarantees the participation of material in the absorption of energy by plastic work. 

Three collapse modes of tubular structures have been shown in the literature survey: axisymmetric 

mode, diamond mode, and mixed one. The main geometrical parameters controlling these modes 

during plastic buckling are: the  (=R/t) ratio of diameter (R) to thickness (t) and the  (=R/L) 

ratio of diameter to length (L) (Karagiozova, and Jones, 2002; Bouchet et al., 2002; Al Galib and 

Limam, 2004; Baleh, 2004; Abdul-Latif et al., 2005). Note that the mean collapse load is the most 

important parameter in evaluating the absorbed energy.  

From the energy point of view, the limit of the performance of axially crushed tubes can be 

enhanced using an innovated idea. This is based on the generation of complex loading conditions 

through the combination of local heterogeneities dictated by the steel-steel composite and the 

external load. Hence, 15% of tubes outer surface is heat treated proposing different shapes. A key 

point that emerges from this study is that the response of the structure (i.e., plastic flow 

mechanism and the energy absorbed) is largely influenced by the treated shape and the loading 

rate. To study the geometry effect of carburizing treated zone, seven different distinct shapes are 

tested: three different ring-shape configurations (2, 4 and 6 rings), a configuration with three 

uniformly distributed vertical strips parallel to the axis of the tube and finally a helically treated 

case with tilt angle of 45°. The behavior of the crushed materials demonstrates the dependence of 

the plastic buckling on the composite type and loading rate.  

 

2 EXPERIMENATLE PROCEDURE 

2.1 Originality and experimental methodology  

This actual investigation is based on a patented concept (Abdul-Latif, 2014), where the first 

results show the importance of this new methodology. Enhancement of the energy absorption 

capacity through the coupling of the steel-steel composite configuration and the loading rate is 

considered.  

In fact, the basic idea is to make a steel-steel composite (i.e., increase the tube wall strength in 

certain zones) via the heat treatment of a given area. The definition of the targeted area is based on 

its form within the treated structure which requires special attention.  
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The originality of this technique consists of partially coating the outer surface of the tube with a 

thin layer of a specific paint before the heat-treatment. Therefore, the coated area should resist 

against any change in phase during treatment. This allows keeping its initial mechanical behavior. 

This study is addressed to study the mechanical behavior of tubular steel-steel composite 

structures under quasi-static and dynamic regime. The material of the structure is subjected to an 

important stress conditions enhancing the energy dissipation capacity. Thus, the influence of the 

loading rate and the shape and layout of the heat treated area is investigated. 

 
                   Figure 1. Initial geometry of the used samples  

 

2-2. Material, geometry and heat treatment 

The investigation focuses on several cases using tubes of 40mm diameter and 1mm thickness 

and an initial length of 140 mm (Fig. 1). 

The choice of this mild steel is evidently based on the ability of the metal to receive a 

particular heat treatment. Indeed, after a few trials subcontracted by a specialized company 

(Bodycoat) nitriding, carburizing and carbonitriding, it turned out that it provided better leverage 

to control appropriately the depth of treatment. 

The opportunity is therefore to give a judicious choice in controlling the geometrical parameters 

(the shape and the depth of the treated zone). The carburizing heat treatment can suitably control 

the depth of treatment by 0.4 mm to set this important geometrical factor. To study the geometry 

effect of carburized zone with only 15% of tubes outer surface, different shapes are tested which 

are three different ring-shape configurations (2, 4 and 6 rings), a configuration with three 

uniformly distributed vertical strips parallel to the axis of the tube and finally a helically treated 

case with a tilt angle of 45°.  

 

2-3. Samples Preparation 

After machining, several operations are performed before the heat-treatment which are 

cleaned and degreased. Tubes are then painted by immersion in a paint solution (LUISO W36 

for gas carburizing) that can provide protection for non-hardened parts up to 6mm in depth, at 

temperatures around 970°C. Furthermore, the different types of area (or shapes) that are tested 

can be classified into three categories (fig. 2) noted by (nH nV and nHe) where n indicates the 

number of bands, H horizontal positioning, vertical V and helical He. The first three 

configurations are: 2H, 4H and 6H having a ring form arranged equidistantly over the entire 

length of the tube. The second category deals with longitudinal strips over the entire length of 

the tube and arranged regularly and parallel to the tube axis. The third category is based on 

helical strips with a helicoidal angle He45°. 
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                     (a)                                                                                       (b) 

Figure 2. (a) Scheme of proposed configurations, (b) view of the geometry of the patterns of 2V 

configurations, 4H and 2He before heat treatment 

 

All tests were performed under the same experimental conditions using a free-ends mode. In 

the case of quasi-static regime, tests are conducted using a universal testing Instron machine 

type 5582. It has a maximum load capacity of 100 kN with a range of cross-head speeds 

varying from 0.001 to 500 mm/min. Furthermore, the obtained quasi-static strain rate is a 

parameter that has no significant influence on the material behavior. Therefore only a speed of 

5 mm/min is employed for this study. 

3 IMPACT APPARATUS 

All the experimental tests are carried out using a dynamic drop mass bench of a maximum 

impact velocity of 10 m/s and of a maximum kinetic energy of 2.5 kJ. It is equipped with a 

dynamic load cell of 20 tons, a 5000g accelerometer, and a laser beam displacement 

transducer (series M5L of international Bullier) for a measurement bracket of 100mm. These 

instruments are connected to a rapid acquisition chain (2.5MHz), which ensures the 

simultaneous recording of these experimental data: force, acceleration and displacement. 
 

 

 

 

 

 

 

 

 

 

 

   (a)            (b)   

                  
Figure 2: (a) overview of the drop mass bench; (b) changes in the impact speed  

 

Tests are conducted under initial impact velocity of about 9.5 m/s use a maximum masse of 45.5 

kg. As a typical example, the rate of change of the impact velocity during crushing process is 

obviously illustrated in figure (2). 

In order to ensure the experimental results accuracy, each test is repeated three times under the 

same experimental conditions (applied velocity and temperature). If the differences between the 

three responses exceed 5%, then another test should to be performed. 
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4 RESULTS AND INTERPRETATION 

It is now known that the absorbed energy is controlled by the plastic hinges and localized areas of 

plasticity which differs from one deformation mode to another. Thus, three issues are mainly 

considered: local hardness (micro-hardness) before crushing, deformation mode and the crushing 

load (and the energy dissipated by plastic buckling). 

 

4.1 Behavior of treated specimens 

Figure 3 analyzes the effect of heat treatment on the tube wall behavior by comparing the non 

heat-treated and treated samples. Several Vickers micro-hardness tests are made. 

Figure 3 shows micro-hardness evolution of 8 traces of the cross section of the wall starting from 

the outer radius to the inner one. Unlike the wall of the non treated specimen, which shows a 

relatively constant Vickers hardness over the whole thickness, the treated specimen demonstrates 

a remarkable increase in hardness from 180 HV to 780 HV, i.e., 300%. This decreases 

substantially linearly to 200 HV at trace 5, and in a constant evolution until the inner end of the 

wall. 
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Figure 3: Effect of the carburizing on the hardness of the tube wall. 

 

 

                        Initial              AM                    MXA                    DM 

Figure 4. Specimen before and after plastic buckling 
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Concerning the collapse mode of tubes, it is obvious that whatever the loading configuration 

(quasi-static or dynamic), three modes of deformation are generated: axisymmetric mode (AM), 

diamond mode (DM), and mixed mode (XM). However, it is noted that in terms of proportion is 

the mixed mode axisymmetric dominant (MXA) that appears frequently, particularly in quasi-

static due to a better centering of the applied load. An examination of the tested tubes at the end of 

collapse (figure 4) reveals that their plastic buckling where the three different modes are captured.  
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Figure 5. Comparison showing the variation of crushing mean load depending on the heat treated 

zone configuration and crushing regime 
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Figure 6. Comparison regarding the variation of energy absorbed controlled by the heat treated 

zone configuration and the speed of loading for an axial displacement of 55mm 
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The influence of the heat-treated zone configuration on the mean crushing load (Fav) is presented 

in figure (5). This figure obviously shows the effect of this zone and its shape on the absorbed 

energy. The enhancement of the absorbing capacity is determined with respect the as-received 

tube (not heat-treated tube, noted As-R), where its mean collapse load (Fav) is compared to the 

other cases. Under quasi-static load, enhancements in the Fav are: 77.7% for 4H against 65.3%, 

52.8%, 66.3%, and 37.8% for 2H, 6H, He45° and 3V cases, respectively.  

As far as the energy absorption is concerned, figure (6) illustrates a clear enhancement in the 

energy dissipated. In fact, this figure shows the evolution of energy absorbed versus the five 

treated configurations for a given axial crushed length of 55mm under quasi-static and dynamic 

loading. As an example, for this axial displacement under quasi static condition, the best 

enhancement regarding the energy absorbed is captured in the case of 4H with a value of 1.9 kJ. 

However, another evolution is recorded at dynamic loading, which gives us a best energy 

absorbed in the case of 2H with a value of 2 kJ. So, the best enhancements are: 78% for 4H and 

then 67% for 2He45° in quasi static with respect to the As-R case against 55% for 2H and 51% 

for 4H under dynamic loading. The best variation in the heated configuration which absorbs the 

highest amount of energy seems to be controlled by the loading speed. However, this conclusion 

will require further investigation to be confirmed. 
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Figure 7. Loading rate effect on the collapse loading evolution versus the axial deflection for 

a case of 6H 
 

 

 

Figure 7 shows a typical example of the crushing load evolution versus axial displacement in 

the case of 6H, with a compressive speed of 5 mm/min in quasi-static regime and 9.5m/sec as 

initial impact velocity for the dynamic regime. These two loading conditions point out a 

remarkable increase in the maximum dynamic load of 104% before the beginning of plastic 

deformation. It is recognized also that the general trend of their evolution provides: Fva= 36.3 

kN for dynamic loading against 27 kN for quasi-static one. This result confirms a noticeable 

sensitivity of the structure to the employed strain rate range.  
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5 CONCLUDING REMARKS 

In this work, the energy absorbing device that includes a thin-walled tube is tested under 

dynamic and quasi-static compressive loads. On the outer surface of the tube, different heat-

treated zones of 15% are proposed. To study the geometry effect of carbonitriding treated 

zone, several shapes are tested: 3 ring-shape configurations of 2, 4 and 6 rings, a three 

uniformly distributed vertical strips and a helically with tilt angle of 45°. All the tests are 

carried out using a dynamic drop mass bench of a maximum impact velocity of 10 m/s and an 

Instron tension-compression universal testing machine of 5 mm/min for quasi-static loading 

condition. 

The obtained results show the enhancement in the energy absorption, notably in the case of 4-

ring (and then helically case with a tilt angle of 45°) is higher than 78% for quasi-static 

loading and 55% for dynamic loading compared to the non-treated tube. Whatever, the heat-

treated zone configuration, the obtained results confirm a noticeable sensitivity of the used 

structure to the strain rate range. 
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ABSTRACT 

 

The aim of this work is to compare mechanical behavior of phenol-formaldehyde resin-

derived CC (carbon) composite with CC/ceramic (carbon/ceramic) composites obtained by the 

impregnation of CC composite with commercially available polysiloxane-based solutions of 

preceram and their subsequent heat treatment at 1000 
o
C, 1500 

o
C and 1700 

o
C. CC/ceramic 

composites heat treated at 1000 
o
C and 1500 

o
C contain silicon oxycarbide [2] and CC/ceramic 

composite heat treated at 1700 
o
C contains silicon carbide [2]. As a reinforcement HTS 5131 

carbon fibers (Tenax) in a form of roving were used. Phenol-formaldehyde resin (Organika-

Sarzyna, Poland) and Lukosil 901 polysiloxane substrate (Lucebni zavody, Czech Republic) used 

in this experiments were inexpensive (cost about 10$/kg). 

Dynamic mechanical analysis (DMA) in three-point clamping mode was carried out. All 

tests were carried out in air at 450 
o
C at an oscillatory frequency of 20 Hz. A multifrequency-

strain mode was set up under a strain of 80 µm. CC composite was used as a reference.  
 In comparison to the reference CC composite, CC/ceramic composites exhibited up to 

10 times longer lifetime. 
 

1 INTRODUCTION 

Carbon fibres-reinforced carbon composites (CC composites) are candidate materials for 
advanced structures, which could work under dynamic load at elevated temperature. Their 
mechanical properties are retained even until 2000 oC, and due to low values of the coefficients of 
thermal expansion (CTE) and high heat of sublimation they have good ablation resistance. 
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Additionally, CC composites exhibit thermal shock resistance and chemical resistance in non-
oxidizing atmosphere.  

However, application of CC composites in high temperature structures is limited due to 
the potential oxidation damage and erosion in air above 400 oC [1]. Much effort is done in order 
to protect CC composites against air – oxidation. Several methods have been developed to 
improve oxidation resistance: chemical vapor deposition (CVD) coatings, multilayer coatings, 
impregnation of CC composite with organosilicon compounds, i.e. polysiloxanes and heat 
treatment [1]. A cross-linked polysiloxane resin during pyrolysis up to 1000 oC can be  
transformed into a silicon oxycarbide (structure containing Si-C-O bonds, blackglass), and during 
pyrolysis up to 1700 oC silicon carbide crystallizes [2]. Our previous work indicate that depending 
on the structure of polysiloxane resins it is possible to obtain ceramic samples with high ceramic 
yield, i.e. from 82 to 86 wt % at 1000 oC and from 61 to 70 wt % at 1700 oC [2]. 

The aim of this work is to compare dynamic mechanical properties of phenol-
formaldehyde resin-derived CC (carbon) composite with CC/ceramic (carbon/ceramic) 
composites obtained by the impregnation of CC composite with commercially available 
polysiloxane-based solutions of preceram and their subsequent heat treatment up to 1700 oC.  
As a reinforcement carbon fibers in a form of roving were used. Phenol-formaldehyde resin 
and polysiloxane substrate used in this experiments were inexpensive (cost about 10$/kg).  

 

2 MATERIALS AND METHODS 

 As a reinforcement HTS 5131 carbon fibers (Tenax) in a form of roving were 
used. To prepare the unidirectional fiber prepreg tapes the carbon fibers were impregnated with 
phenol-formaldehyde resin (Organika-Sarzyna, Poland). The tapes were dried and cut to obtain 15 
cm long laminates and unidirectionally stacking laminates were placed in a metallic mold. The 
stacked layup was heated up to 140 oC in air atmosphere under a pressure of 10 MPa. Then, the 
composite samples were heated to 1000 oC in an argon atmosphere to obtain CC composite. C/C 
composites obtained in such a way were impregnated with Lukosil 901 polysiloxane (PS) resin 
(Lucebni zavody, Czech Republic). Impregnated composite samples were subjected to subsequent 
thermal treatment in an inert argon atmosphere. CC/ceramic composites heat treated at 1000 oC 
and 1500 oC contain silicon oxycarbide [2] and CC/ceramic composite heat treated at 1700 oC 
contains silicon carbide [2]. Samples in a form of bars were prepared (1mm x 4mm x 35mm).   
Types of prepared CC/ceramic composites are presented in Table 1, the characteristics of the 
composites are presented in Table 2 and their mechanical properties are presented in Table 3. 

Table 1. Types of prepared composites 

 

 

 

 

 

 

 Composite Description Matrix 

Reference CC composite CC C 

Sample 1 CC  + PS, HT 1000 oC C+SiCOa 

Sample 2 CC  + PS, HT 1500 oC C+SiCOb 

Sample 3 

 

CC/ceramic 
composites 

CC  + PS, HT 1700 oC C+SiC 
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Table 2. Microstructure of composites 

Table 3. Mechanical properties of composites 

 
Dynamic mechanical analysis (DMA) in three-point clamping mode was carried out with 

TA Q800 DMA analyzer equipped with a TA Universal Analysis 2000 software. The span 

between supports was 20 mm. All tests were carried out in air at 450 oC at an oscillatory 

frequency of 20 Hz. A multifrequency-strain mode was set up under a strain of 80 µm. CC 

composite was used as a reference.  

 

3 RESULTS AND DISCUSSION 

 
Fig. 1. Results of DMA for reference sample  

Composite Aparent density 

[g/cm3] 

Specific density 

[g/cm3] 

Porosity 

[%] 

Reference 1.18 1.53 23 

 Sample 1 1.39 1.75 14 

Sample 2 1.33 1.63 20 

Sample 3 1.19 1.56 21 

Composite Bending strength 

[MPa] 

Young's modulus 

[GPa] 

Deflection 

[mm] 

ILSS 

[MPa] 

Reference 300 ± 20 91 ± 6 0.73 ± 0.15 14 ± 2 

 Sample 1 287 ± 11 71 ± 7 0.85 ± 0.15 15 ± 1 

Sample 2 289 ± 15 74 ± 14 0.82 ± 0.02 14 ± 1 

Sample 3 279 ± 32 78 ± 14 0.55 ± 0.02 15 ± 1 
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Fig. 2. Results of DMA for sample 1 

 

Fig. 3. Results of DMA for sample 2 
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Fig. 4. Results of DMA for sample 3 

 

 Figure 1-4 represents modulus-number of cycles relationships registered during DMA 

analysis. It is possible to observe differences in dynamic properties of investigated samples. Table 

4 gathers the numbers of cycles corresponding to the losses of 20% of the Young's modulus and 

storage modulus. It is possible to note that all CC/ceramic composites represents better dynamic 

properties in comparison with the CC reference. CC/ceramic composite obtained at 1000 oC 

(Sample 1) shows at least 2 times better fatigue life, while CC/ceramic composite obtained at 

1500 oC (Sample 2) shows 5 times better fatigue life respect to the CC reference. CC/ceramic 

composite obtained at 1700 oC (Sample 3) exhibits 10 times longer lifetime in comparison to the 

CC reference.       

 

Table 4. Number of cycles when the loss of 20% of the Young’s and storage modulus was 

observed  

 

Composite Number of cycles when the loss of 

20% of the Young's modulus  

was registered   

Number of cycles when the loss of 

20% of the storage modulus  

was registered   

Reference 373 000 358 000 

 Sample 1 1 100 000 767 000 

Sample 2 2 020 000 2 042 000 

Sample 3 4 050 000 4 120 000 
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4 CONCLUSIONS 

 The aim of this work was to compare dynamic mechanical properties of CC (carbon) 

composite with CC/ceramic (carbon/ceramic) composites obtained by the impregnation of CC 

composite with commercially available polysiloxane-based solutions of preceram and their 

subsequent heat treatment up to 1700 oC. The results shows that at elevated temperature, 

CC/ceramic composite obtained at 1700 oC exhibit the best fatigue properties in an oxidative 

atmosphere. This results from the presence of silicon carbide that protect carbon fibres and carbon 

matrix against oxidation.  
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ABSTRACT

The aeronautics industry have benefited from the use of numerical models to supplement or
replace the costly design-build test paradigm. Dynamic models are commonly calibrated to
obtain optimal fidelity to data. In order to improve calibration methods, we wish to take into
account the unavoidable compensating effects between the parameters which lead to the non-
uniqueness of the responses. An envelope-bound info-gap model will be used to explore the
change in predictions as the the parameter values are allowed to vary for different horizons
of uncertainty. The calibration is considered robust if an acceptable level of fidelity to data is
obtained even in the presence of uncertainty. Our methodology is demonstrated on an example
involving the dynamic response of a clamped plate with progressively reduced thickness.
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1 INTRODUCTION

Model calibration methods improve the correlation between finite element models (FEM) and
measured data. The aim is to obtain the most predictive analytical model despite their incom-
pleteness to describe exactly the underlying physics: most of the parameters should be consid-
ered as uncertain rather than nominal values due to manufacturing and experimental variability.
In this case, a stochastic calibration method should be use.

On the other hand, the calibration convergence can be wrong due to physical compen-
sating effects which lead to fidelity-equivalent solutions. The info-gap theory provides a way to
ensure that the system remains reliable even under these unknown compensating effects. This
paper presents an approach to enhance the robustness of a stochastic calibration method using
the info-gap theory.

2 ROBUST CALIBRATION

2.1 Calibration performances

We wish to compare experimental data results to simulatated outputs. A common metric to
evaluate deterministic calibration performances is the normed Euclidean distance DE:

DE =
n∑
i=1

√
(vai − vmi

)2

vmi

(1)

vm is a vector containing the nominal eigenfrequencies measured (n ouputs) and va
the corresponding vector containing the nominal analytical responses and the same number of
outputs.

Parameters may be considered as uncertain and defined by probability density functions.
In this case, the model now provides uncertain outputs and can be calibrated using stochastic
approaches such as covariance adjustment [? ], Gibbs sampling [? ] and Metropolis-Hasting
algorithm [? ]. The Euclidean distance is not suitable to compare two unknown distributions
whereas Bhattacharya distance DB is relevant to evaluate multivariate features [? ]. This metric
takes into account both the mean-difference and the covariance difference between the two
distributions :

DB =
1

8
(v̄a − v̄m)TΣ−1(v̄a − v̄m) +

1

2
ln(

det(Σ)√
det Σa det Σm

) (2)

with v̄m the vector containing the measured eigenfrequencies mean values and v̄a the
mean vector of the mean analytical responses. The pooled matrix Σ is given by the combina-
tion of Σm the covariance of the experimental eigenfrequencies and Σa the covariance of the
analytical ouputs as Σ = Σa+Σm

2
.

2.2 Info-gap theory

Info-gap theory has its origins in Ben-Haim [2] studying the reliability of mechanical systems.
Since, this approach has been use on a wide range of applications such as climate models [3]
and medical researches [4]. The purpose of info-gap is to provide tools for decision-makers
in order to assess risks and opportunities of a model in light of the analysis of severe lack of
information.

2
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Figure 1. Nested subsets (left) - Robustness curve (right).

In practice, important modeling information may be lacking due to an incomplete un-
derstanding of the underlying physics. Hence, probability density functions are not generally
suitable alone to describe severely uncertain parameters θ.

We introduce the horizon of uncertainty characterized by α. The larger α, the greater the
range of unknown parameter variations i.e. a bigger space is available for uncertain parameters.
Numerical model performances are commonly defined by a function which assess the quality of
the response fidelity. Consequently, a catastrophic failure may appear for one set of uncertain
parameters sampled from the previous space.

Let’s consider several horizons of uncertainty αi, the function that yields the worst case
model predictions for a given horizon α is called R̂ and calculated as follow [5] :

R̂(α) = max
θ∈U(α,θ̃)

R(θ) (3)

θ̃ is the calibrated best-estimate parameter values of the simulation model. The robust-
ness function expresses the greatest level of uncertainty at which performance remains accept-
able.

α̂ = max{α : R̂(α) ≥ Rc} (4)

with α̂ the maximum horizon to which info-gap uncertainty model is allowed to expand
as long as minimal requirements Rc are satisfied.

The figure 1 explains in a schematic way the method to compute robustness curve [6].
The unknown parameters are u1 and u2. At the first step αA, we consider no uncertainty thus
the space contains a single point A which is necessarily the worst case. The respective perfor-
mance R(u1A, u2A) is noted on the robustness curve on the right. Second step, the horizon of
uncertainty is increased to αB. In the space defined by αB, the worst case can be found using a
factorial design or by optimization [7]. The algorithm returns the worst case B and report it on
the robustness curve. The procedure can be repeated for as much nested subsets required.

3
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3 NUMERICAL APPLICATION

A new generation of ceramic matrix composite (CMC) turbine blades have been developed [8].
These materials show high resistance to extremely high temperature (1000◦C), low density and
a good fracture toughness compared to conventional metallic alloys.

The approach developed previously is applied to a CMC plate perfectly clamped with a
progressively reducing thickness. The plate is itself divided into three isotropic material parts
to represent physical heterogeneity due to the industrial process. Differences between the ex-
perimental results and the numerical outputs will be analyzed through the first three eigenfre-
quencies of the structure.

Material 3Material 1 Material 2

Figure 2. Material properties distribution.

60 mm

3 mm

0,5 mm

10 mm

Figure 3. Plate dimensions.

The system is studied through material 1 and material 2 Young’s Modulus, noted re-
spectively E1 and E2. The range of parameters E1 and E2 values is [20 GPa;40 GPa], divided
into a 20×20 grid. Thus, 300 Monte-Carlo sampling are achieved with NASTRAN for each
combination of parameters using these values as mean. The parameters variance are defined as
10% of the corresponding mean values.

For the simulated test data, 500 experiments are sampled in the same way with E1 =
E2 = 30 GPa and their variances σE1 = σE2 = 3 GPa. No model form error is added between
the two samples. The nominal exact outputs are ν1 = 18.15 Hz, ν2 = 50.64 Hz and ν3 = 78.25
Hz.

The error surface responses are plotted in the space of the two parameters (Figure 4).
The contours illustrate fidelity-equivalent solutions and define satisfying boundaries. The best
performance marker stands for the global minimal distance found in the discrete space. As
expected, this marker totally coincides with the experimental parameters marker for both dis-
tance metrics. In this case, the corresponding couple of parameters provides exact and optimal
solutions.

In Figure 4(a), there is a slender space where the error remains below 0.2%. It means
that deterministic calibrating algorithms can find acceptable set of parameters quite far from the
actual experimental parameters. These compensating effects are inevitable even in the absence
of bias in the model prediction. In Figure 4(b), the isocontours create nested circles which the
lowest error in located in the center. In this case, stochastic calibration should provide relevant
updated parameters.

4
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Figure 4. Euclidean and Mahalanobis distances.
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4 CONCLUSION

This paper proposes a framework to motivate the robust calibration process. In the case study,
material parameters have been considered uncertain and the compensating effects between them
as a lack of knowledge. Successful updating provides parameters which minimize the error be-
tween simulated experiments and analytical outputs while taking into account unavoidable com-
pensating effects. Two calibration metrics have been investigated, in particular a deterministic
euclidean error as well as the statistical Bhattacharyya error.
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ABSTRACT 
 

 

In order to improve our knowledge about the dynamic behavior of composite materials used 

in ballistic protection, it is necessary to characterize first the mechanical behavior of single 

ballistic yarns, part of these fibrous structures, which will help to predict their impact 

behavior. 
To respond to this yarn characterization, we have developed a new device, the Tensile 

Impact Test of Yarn (TITY), in order to test yarns under dynamic uniaxial tension and 

determine their mechanical behaviors in the longitudinal direction. During the test, we 

measure the displacement of the flying mass when it applies a longitudinal tension on the 

yarn which undergoes a strain up to its rupture. 

After data treatment, we obtain the evolution of the velocity of the flying mass versus 

time which depends on the mechanical behavior of the yarn (evolution of the stress vs. strain, 

ultimate stress and strain).Thanks to an analytical approach proposed to model these two 

phases, we could estimate the longitudinal Young modulus of the yarn under dynamic 

loading. These results also provide us information about the specific energy absorbed by the 

yarn and what could be failure mechanisms of yarns under a dynamic tension. This 

knowledge about dynamic behavior of yarns would then be considered for improving future 

numerical models. 
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1 INTRODUCTION 

Composite materials with fibrous reinforcement are widely present in ballistic protection and 

offer both high protection level and lightweight to armored structures. However, these 

materials could potentially still be improved with a better understanding of the influence of 

the composite material properties on ballistic performances. During an impact, the mechanical 

behavior of the composite material is mainly controlled by the dynamic mechanical behavior 

of its components (matrix and reinforcement). For ballistic protection materials, the fibrous 

reinforcement can be a woven, a unidirectional or a nonwoven structure, itself composed of a 

multitude of yarns intertwined, or layered in the case of a unidirectional structure. Among 

several inner parameters like the number of filaments, the linear density or the nature of the 

fiber, the mechanical behavior of these complex structures depends on the mechanical 

behavior of these single yarns. Few studies have been done on the characterization of ballistic 

yarn mechanical behavior in dynamic load at the three scales: the filament scale [1, 2], the 

yarn scale [3, 4] and the fabric scale [5, 6]. Thus, characterizing the mechanical behavior of 

single ballistic yarns can widely help to predict the impact behavior of these fibrous 

structures. 
 In this paper, a method for testing aramid yarns in dynamic uniaxial tension using a 

new experimental device is presented. Then, a description of the measurement device 

associated is done with the different curves obtained after data treatments. In a third part, we 

discuss about the experimental results obtained. 

2 EXPERIMENTAL TESTS 

2.1 The Tensile Impact Test for Yarn (TITY) device 

To respond to this yarn characterization, we have developed a new device, the Tensile Impact 

Test for Yarn (TITY), in order to test yarns under dynamic uniaxial tension and determine 

their mechanical behaviors in the longitudinal direction. The TITY device consists of three 

main parts: the support, the projectile and the yarn sample which is maintained by its two ends 

to the support and the projectile (Figure 1). 

 

 

 

 

 

 

 

A gas gun is used to propel the TITY device at an initial velocity vinitial from 20 to 40 m/s. 

Aramid yarns (Twaron 336Tex) are tested and two different sample lengths are used (5 mm  

and 20 mm) to reach initial strain rates within the range from 1000  to 4000 s
-1

. So, the whole 

device (support, yarn and projectile) is propelled at a velocity vinitial through the gas gun up to 

its muzzle where the support is suddenly stopped caused by a cross-section diminution. The 

working mass keeps its initial velocity vinitial and applies a dynamic uniaxial tension on the 

yarn sample (Figure 2). 

 

 

 

 

 

 

Figure 1. TITY device 
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Criteria had to be taken into account in order to realize tensile tests in good conditions: 

- Firstly, the yarn has to be maintained straight along the TITY device in order to 

apply a longitudinal tension with the projectile without transversal component.  

 

- Secondly, any slide of the yarn inside the support or the projectile has to occur 

during tensile tests. It results in an energy absorption provided by the projectile to 

the yarn. The yarn rupture and the data obtained are thus misrepresented.  

 

- Moreover, the rupture of the yarn has to occur in the effective length, between the 

edge of the support and the edge of the projectile.  

 

- At least, the projectile weight has to be adapted to the tested yarn. The energy 

provided by the projectile to the yarn has to be superior to the rupture energy of the 

yarn but it also doesn’t have to be so important in order to observe elongation and 

rupture phenomena of the yarn. 

2.2 The laser measurement device 

During the test, we measure the light intensity variation of a homogeneous laser beam with a 

photo detector. This variation is due to the motion of the projectile in front of the 

homogeneous laser beam when it applies a longitudinal tension on the yarn which undergoes 

an elongation up to its rupture. From this light intensity variation, the photo detector provides 

us a voltage variation versus time. 

In order to define a relationship between the coverage of the laser line and the position 

of the projectile, a second discontinuous laser line with five markers is superposed to the 

homogeneous laser beam (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Principle of the TITY device. 
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During the passage of the projectile in front of the homogeneous laser beam, we can identify 

several phases among which four ones interest us. The first phase corresponds to a constant 

displacement of the projectile at a velocity vinitial, the second phase to the strain of the yarn, 

the third phase to a gradual rupture of the yarn and a fourth phase to a constant displacement 

of the projectile at a velocity vresidual (Figure 4). The times t1, t2 and t3 are identified with the 

use of an ultra high speed camera during tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to obtain the projectile displacement from the voltage, a calibration of the laser 

measurement device is necessary. Then, adapted mathematical data treatments of the 

projectile displacement provide us the projectile velocity (Figure 5). 

 

 

Figure 3. Sketch of the double laser device. 

Figure 4. Test on aramid yarn (Twaron 336Tex) on 2 cm at vinitial = 20 m/s: 

Identification of the four phases on the voltage curve. 
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2.3 Validation of the laser measurement device 

In order to validate our laser measurement device, we realized a campaign of tests with both 

our device and a Photon Doppler Velocimeter (PDV). The PDV device can provide us 

directly a measurement of the velocity by measuring the difference of frequency between the 

incident (f0) and the reflected lasers light (fd) (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

A set of 16 tests have been performed on yarn samples (Twaron _ 336Tex) of 2 cm length at 

vinitial = 31 m/s. For each test the PDV device curve and our laser device curve are 

superimposed, principally during the phases of the yarn strain (phase n°2) and the yarn 

rupture (phase n°3) what allows validating our new experimental device and the laser 

measurement device (Figure 7). 

 

 

 

 

 

 

Figure 5. Test performed on aramid yarn (Twaron  336Tex) of 2 cm at vinitial = 20 m/s:  

black (triangular shape) left scale: Voltage-time curve, red (square shape) first right scale: 

projectile displacement-time curve and blue second right scale: projectile velocity-time 

curve. 

Figure 6. Principle of the PDV device. 
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3 RESULTS 

A set of ten tests with the TITY device has been performed on aramid yarn (Twaron _ 

336Tex) of 2 cm length at vinitial = 20 m/s. We can evaluate the initial strain rate at 1000 s
-1

. 

The projectile velocity variation is obtained from the voltage measured thanks to the 

calibration and the adapted mathematical data treatments. We can identify the four phases 

including those with the deformation and the rupture of the yarn (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Validation of the laser measurement device with the PDV device. 

Figure 8. Identification of the four phases on the projectile velocity-time curve for 

tests performed on aramid yarn (Twaron 336Tex) of 2 cm length. 
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The yarn deformation phase is of about 70 µs and is followed by a gradual yarn rupture phase 

of about 150 µs. This characteristic evolution of the projectile velocity versus time depends 

on the mechanical properties of the tested yarn. Reproduce the shape of this characteristic 

curve with an analytical approach will allow us determining the longitudinal mechanical 

parameters of the yarn in dynamic load. 

The laser measurement device lets appear artifacts during the phases of constant 

velocity but the discontinuous laser light with the five markers allows measuring the initial 

and residual velocities and visualizing the complete shape of the projectile velocity-time 

curve during the phases n°1 to n°4.  

The residual velocity measured is 10 m/s. With a projectile of 2,6 g mass, the kinetic 

energy variation ΔEc is equal to 0,390 J. By assuming that the whole yarn volume is a part of 

the absorption of the energy provided by the projectile, the specific energy absorbed by the 

yarn Eabs is equal to 83,5 MJ/m
3
. In order to compare this data between a dynamic load and a 

quasi-static load, tests have been performed on the same yarn sample at a strain rate of 0,001 

s
-1

 (Figure 9).  

The specific energy absorbed by the yarn under quasi-static load (0,001 s
-1

) is equal to 

67,5 MJ/m
3
. From these two results of the specific energy absorbed by the yarn, we can 

suppose that the rupture mechanisms in dynamic load are different and need more energy than 

that in quasi-static load (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 CONCLUSION 

We have developed a new device to test yarn in dynamic uniaxial tension, the Tensile Impact 

Test for Yarn (TITY), in function of several criteria in order to respect good test conditions. A 

measurement device is used to obtain the variation of the projectile displacement thanks to a 

homogeneous laser light.  

After several data treatments, we obtain the evolution of the projectile velocity versus 

time which depends on the mechanical behavior of the yarn (evolution of the stress vs. strain, 

ultimate stress and strain). The comparison of our results with ones of a Photon Doppler 

Velocimeter allows validating this new dynamic uniaxial tension device and the associated 

laser measurement device. Four phases are defined on the velocity versus time curve. Among 

Figure 9. Quasi-static tests performed on aramid yarn (Twaron 338Tex) of 15 cm at 0,001 s
-1

. 
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them, we identify two important phases which are the yarn elongation and the progressive 

yarn rupture.  

Thanks to an analytical approach proposed to model these two phases, we could 

estimate the longitudinal Young modulus of the yarn under dynamic loading. These results 

allow us assuming that the rupture mechanisms in dynamic load are different and need more 

energy than that in quasi-static load. Thus, this new test on yarns under dynamic loading gives 

promising results and, with further work, could lead to a better knowledge of ballistic yarns. 

This knowledge about dynamic behavior of yarns would then be considered for improving 

future numerical models. 
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ABSTRACT 

 
Modern design in the aerospace industry requires the use of lightweight structures, ensuring 
security and comfort and responding adequately to the environmental demands. In particular, a 
great deal of interest is focused on the question of noise reduction, because lightweight structures 
have generally poor sound insulation properties.  
The aim of the present work is to find a periodic optimal geometry of the honeycomb core. The 
suggested design strategy reported here is an optimization procedure involving tow scales: the 
meso-scale for the unit cell of the honeycomb panel and the macro-scale for the whole panel. To 
this purpose, an analytical homogenization technique was developed to determine the effective 
properties of the honeycomb structure along with a comparison with existing models.  Also, a 
sensitive analysis in terms of the geometrical parameters of the unit cell has been conducted. Then, 
the modal density of honeycomb panel was predicted using the macro homogenized parameters. 
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1 INTRODUCTION  

Honeycomb core sandwich panels are widely used in designing the structure of the aerospace 
industry. These panels typically feature orthotropic alveolar cores bonded to high modulus laminate 
skins. Generally, commercial varieties of honeycomb core sandwich panels are optimized for 
mechanical and weight constraints. As a result of this, a sandwich panel can be lightweight and 
designed to carry high mechanical loads. However, it tends to be poor when it comes to acoustic 
attenuation. To address this issue, several attempts have been made to identify the optimal sandwich 
plans that balance mechanical and acoustic properties. Among these attempts, the following 
references [1-3] have developed a methodology in order to maximize the transmission loss of these 
types of panels.  

In the present paper, an optimization methodology was proposed to reduce the modal 
density (𝑛𝑛) for the honeycomb sandwich panels. The modal density was predicted by using the 
analytical model established by Renji [4], which takes into account the shearing effect of the core 
structure. To predict the modal density, the effective properties of the honeycomb sandwich 
structure are required. For this purpose, the effective properties were obtained by analytical 
homogenization techniques by exploiting the meso-scale for the unit cell of the honeycomb panel 
and the macro-scale of the whole panel. Thereafter, a sensitivity analysis in terms of the geometrical 
and material parameters of the unit cell has been conducted. 

1. FORMULATION OF THE PROBLEM 

1.1 Optimization Model Formulation 

The modal density of honeycomb sandwich panels is investigated in a large number of papers. 
Among the first formulation of the modal density for isotropic sandwich panels is developed by 
Wilkinson [5]. Later, a study was carried out by Erickson [6] to investigate the effect of the 
anisotropy of the core on the modal density. The theories suggested by the latter two authors are 
compared to experiments by Clarkson [7]. 

Experimental and analytical modal density for honeycomb sandwich panels, used in some 
applications, have been reported in the reference [4]. The study done in the reference [8], a summary 
of different theories for the modal density behavior of honeycomb sandwich panels has been 
reported. 
The expression for the modal density of a honeycomb panel with an isotropic face sheet is written 
as follows: 

𝑛𝑛(𝑓𝑓) =
𝜋𝜋𝜋𝜋𝜋𝜋𝑀𝑀𝑝𝑝𝑓𝑓

𝑁𝑁
�1 + �𝑀𝑀𝑝𝑝

2𝜔𝜔4 +
4𝑀𝑀𝑝𝑝𝜔𝜔2𝑁𝑁2

𝐷𝐷
�
−�12�

�𝑀𝑀𝑝𝑝𝜔𝜔2 +
2𝑁𝑁2

𝐷𝐷
�� (1) 

Where: 
 a b is the panel surface area 
 D is the section bending stiffness,  
 Mp is the build-up panel mass/area  
 N is the shear stiffness 

1.2 Optimization Model Formulation 

Optimization methods are mainly used in engineering design activities to achieve a competitive 
design, which optimize (i.e. either minimize or maximize) a certain objective by satisfying a number 
of constraints. The first step in an optimal design is to formulate the problem by writing the 
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mathematical functions relating to the objective and constraints [9]. For this study, the optimization 
problem is defined in the following form: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀      𝑓𝑓(𝑥𝑥)  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡     𝑔𝑔𝑖𝑖(𝑥𝑥) ≥ 0,                        𝑖𝑖 = 1,2, … , 𝐼𝐼; 
                         ℎ𝑗𝑗(𝑥𝑥) = 0,                         𝑗𝑗 = 1,2, … , 𝐽𝐽; 
                         𝑥𝑥𝑘𝑘𝑙𝑙 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝑥𝑥𝑘𝑘𝑢𝑢  ,                𝑘𝑘 = 1,2, … ,𝑁𝑁. 

(2) 

Where 𝒇𝒇(𝒙𝒙) is the objective function. 𝒈𝒈𝒊𝒊(𝒙𝒙) is the equality constraint. 𝒉𝒉𝒋𝒋(𝒙𝒙) is the inequality 
constraints. While 𝒙𝒙 is the variable vector, represents a set of variables 𝑥𝑥𝑖𝑖. 

 
Figure 1. The current optimization methodology of the honeycomb modal density. 

2 RESULTS 

For the analyses of the present study, the hexagonal-cell core sandwich panel is considered, as 
illustrated in the figure (1). The honeycomb core is made of Nomex, whose properties and 
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dimensions are summarized in the table (1). On the other side, the face-sheet material is made of 
Aluminum, whose properties are 𝐸𝐸 = 72,5 GPa, 𝜈𝜈 = 0.33, and the skin thickness 𝑡𝑡𝑓𝑓 =
0.076 mm. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The geometrical parameters of the honeycomb cell. 
 
 

 
 
 
 
 
 
 
 

Table 1. The geometrical core values of the honeycomb cell. 

Figure 3. The sensitivity results of geometrical honeycomb panel 

Core: Nomex honeycomb core 

Core density 1,38 103kg/m3 
Core thickness 20 mm 
t2, t1, 0,079 mm, 0,159 mm 

l1, l2, 𝜽𝜽 4,9 mm, 1,63 mm, 𝜋𝜋
12

 𝑟𝑟𝑟𝑟𝑟𝑟 

𝜃𝜃 

𝑙𝑙1 

𝑙𝑙2 
𝑡𝑡2 

𝑡𝑡1 
𝑑𝑑 

𝑡𝑡𝑐𝑐 

𝑌𝑌(𝑊𝑊) 

𝑋𝑋(𝐿𝐿) 
𝑡𝑡𝑐𝑐 
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Figure 4. The sensitivity results of material honeycomb panel 

 
The figures (3) and (4) represent the sensitivity analysis done for a honeycomb sandwich 

panel illustrated in the figure (1). The study shows that for 1% of variation of each honeycomb 
properties, in the medium and high frequency, the effect of the properties is very considerable with 
respect to the low frequency. 

 

 
Figure 5. The comparison between the optimal modal density and the original modal density  

By following the optimization methodology presented in the figure (1), a comparison of the 
non-optimal and optimal modal density is depicted in the figure (5). The optimization study is done 
under two constraints the mass and the stiffness of the honeycomb panel. These two constraints 
have to remain constant after the optimization study. The red modal density curve in the figure (5) 
presents the minimum modal density obtained by the optimal variable design. 

3 CONCLUSION  

The present optimization study was based on the modal density predicted by Renji’s model. This 
modal density takes into account the transverse shear effect. The sensitivity analysis of the 
honeycomb sandwich panel showed that the effective properties of the panel, obtained by different 
homogenization techniques, have considerable influence on the modal density whether in the 
medium or the high frequency range. This sensitivity study allows us to identify the most sensitive 
properties which we should focus on them. The optimization of these sensitive core parameters 
resulted a minimum modal density with respect to the previous one. 

 

5 

 209/361



DYNCOMP’2015  2-4 June 2015, Arles (France) 
 

4 REFERENCES 

[1] M. A. Lang and C. L. Dym. Optimal acoustic design of sandwich panels. Journal of the 
Acoustical Society of America. 57: 1481-1487, 1975. 

[2] R. Hooke and T. A. Jeeves. Direct search solution of numerical and statistical problems. J. 
Assoc. Comput. Mach. 8: 212-219, 1961. 

[3] S. E. Makris, C. L. Dym, and J. M. Smith. Transmission loss optimization in acoustic 
sandwich panels.  Journal of the Acoustical Society of America, 79 (6):1833-1843, 1986. 

[4] K. Renji. P.S. Nair and S. Narayanan. Modal density of composite honeycomb sandwich 
panels. Journal of Sound and Vibration, 195(5):687-699, 1996. 

[5] J. P. D. Wilkinson. Modal densities of certain shallow structural elements. J. Acoust. Soc. 
Am., Vol. 43(2):245-251, 1968. 

[6] L. L. Erickson. Modal densities of sandwich panels: theory and experiment.  The Shock and 
Vibration Bulletin, 39(3): 1-16, 1969. 

[7] B. L. Clarkson and Ranky M.F. Modal density of honeycomb plates. Journal of Sound and 
Vibration, 91:103-118, 1983. 

[8] S. Ghinet and Atalla N. Vibro-acoustic behaviors of flat sandwich composite 
panels.Transactions of Canadian Soc. Mech. Eng J. 30(4), 2006. 

[9] K. Deb. Optimization for engineering design: Algorithms and examples. New Delhi: 
Prentice-Hall, 1995. 

5 COPYRIGHT NOTICE 

Copyright ©2015 by the authors. Distribution of all material contained in this paper is permitted 
under the terms of the Creative Commons license Attribution-Non Commercial-No Derivatives 4.0 
International (CC-by-nc-nd 4.0). 
 

 
 

 

6 

 210/361



DYNCOMP’2015  2-4 June 2015, Arles (France) 

 

 

  

 

 
 

A TWO STEPS DAMAGE LOCALIZATION METHOD 

BASED ON WAVELET PACKET DECOMPOSITION.  

APPLICATION TO MULTI-LAYER COMPOSITE 

STRUCTURES 

A. Boumrar, A. Bouazzouni* and M. Dahmane 

 

Laboratoire de Mécanique, Structures et Energétique 

Université Mouloud Mammeri de Tizi-Ouzou,  

BP17 RP, Tizi-Ouzou 15000, ALGERIA 

tak_gm@hotmail.fr , abouazzouni@yahoo.com, dahmani_merzak@yahoo.fr  

 
 

ABSTRACT 
 

In this work, we propose a two steps method for localizing damages in multi-layer 

composite structures. The signals of the dynamic responses of the healthy and damaged structures 

are initially decomposed using the analysis into wavelet packages and then rebuilt. Then, energies 

of these last signals are used to define an indicator of variation of energy called Wavelet 

Packages based Energy Variation Index (WPEVI). The robustness of this damage localization 

index is tested in the case of composite beams with respectively two and three damages.  

To ascertain the quality of the results, the sensitivity of the proposed method to structural 

damage is studied. In this respect, we define the threshold sensibility of a damage vibration 

indicator based on wavelet package decomposition of structural vibration responses before and 

after the occurrence of structural damage. Each of these structural vibration responses is 

decomposed to the j
th
 order wavelet package sub-signals. The structure is subdivided into a 

certain number of finite elements. For a structure with one particular finite element perturbed to a 

certain rate, the damage indicator is then defined as the maximum of all energy variations of the 

wavelet package sub-signals of the structural vibration response before and after the occurrence 

of some structural damage. The indicator is called maximum energy variation (MEV). For the 

same mono-excitation, this indicator is then evaluated for all the elements of the discretization 

with the same perturbation rate. The values of this indicator are then represented on a graph in 

terms of the number of the finite element. Once we have determined the element whose damage 

indicator value is minimum, further trials are carried out in order to draw the curve representing 

the indicator in terms of the different rates of damage. From the graph, we determine the least 

detectable damage rate using the wavelet package decomposition of structural response. A 

mapping of the structure is carried out as to the least detectable damaged element of the 

structure. With this tool in hand, we may ascertain or not each of the damage localization results.  
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1 INTRODUCTION 

The aim of this work is to develop a damage detection-localization procedure as well as a 

global damage threshold indicator, both based on the wavelet packet decomposition. 

The projected damage detection procedure is to use temporal response function data. The 

method is in particular based on sub-signals of a certain level in the decomposition process of a 

signal in wavelet packets. The property of wavelet packets decomposition for denoizing 

signals is certainly of great help particularly in the case of laminated composite structures. 

Another part of the undertaken work consists in establishing a global threshold damage 

indicator. Many research works have dealt with damage detection in composite structures but 

few of these have been concerned with the minimum of the magnitude of the damage that can 

be detected. Yam and al [1] use the wavelet packet analysis for the detection of damage in 

composite laminate plates. In their work, they define a damage indicator named “Maximum 

Energy Variation” (MEV). To establish this, they consider a structure with one particular 

finite element perturbed to a certain rate. Then, they calculate successively the energy of each 

sub-signal in the wavelet packets decomposition of the dynamical response of the damaged 

structure as well as that of the corresponding sub-signal corresponding of the healthy 

structure. The difference of these respective energies is then calculated and divided by the 

total energy of the sub-signals of the considered level of wavelet decomposition. The 

maximum of these normalized variations constitutes the so-called MEV damage indicator. 

Our contribution consists in finding a global threshold damage indicator rather than a 

particular one for a defined position of the damaged element in the structure as did Yam and 

al.  This global threshold damage indicator is useful to help ascertain whether results of the 

localization process are reliable or not.  

In our work, we are interested in using this damage indicator in the case of a layered beam 

structure. For the purpose of analysis, a finite element model of this structure is built. For the 

same excitation and damage rate, a graph representing the indicator in terms of the perturbed 

element number is drawn to determine the element for which this has the lowest value. 

Different graphs of the MEV indicator in terms of damage rate may be drawn for different 

damaged element positions along the structure, and a damage detection threshold is 

established.    

Before presenting the damage detection method and the global threshold damage 

indicator, first let us define the SI20 beam finite element. 

2 FINITE ELEMENT SI20 

The finite element model we use in this study is based on the theory of the zigzag 

movement of the first order. The finite element [2] is composed of three layers in symmetrical 

stackings sequences. Thus, the displacement at an arbitrary point of the beam can be expressed by 

a longitudinal displacement u1 (x) along the beam axis and a transverse u3 (x) along the z axis and 

a rotation γx (x) characterizing the rotation about the y axis (see FIG. 1). 

Displacements are given by: 
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 𝑢1 𝑥 = 𝑢 𝑥 +  z 𝛾𝑥 𝑥 

𝑢3 𝑥 =  𝑤 𝑥                
                                                                                               (1) 

where 𝑢 is the longitudinal displacement at z = 0 and 𝑤 is the deflection of the beam axis. 

The rigidity matrix is obtained from the strain energy of the element: 

Ue = 
1

2
 ԑ 𝑘 𝑇𝑙

0
3
𝑘=1  𝐷(𝑘) ԑ(𝑘) 𝑑𝑥   =  

1

2

3
𝑘=1  𝑣𝑒

 𝑘 𝑇𝐵 𝑘 𝑇𝑙

0
𝐷(𝑘)𝐵(𝑘)𝑣𝑒

(𝑘)𝑑𝑥               (2)         

 

FIG. 1− Initial and deformed SI20 element 

where   k : layer number. k = 1, 2 et 3. l : length of the element. D : elasticity matrix of the 

element. 

             B :  deformation matrix.  𝑣𝑒  = 𝑢(𝑘), 𝑤(𝑘), 𝛾𝑥
(𝑘)]𝑇 ∶ nodal displacement vector.  

Similarly, we may write the kinetic energy of the element in order to derive the mass matrix: 

                         𝑇𝑒 =   
1

2
 𝑢  𝑘 𝑇𝑙

0
3
𝑘=1 𝑅0

 𝑘 
𝑢  𝑘 𝑑𝑥 =  

1

2

3
𝑘=1  𝑣 𝑒

 𝑘 𝑇𝑙

0
𝑁𝑇𝑅0

(𝑘)
𝑁𝑣 𝑒𝑑𝑥      (3)                                                                                                  

where :  𝑣 𝑒  : the nodal velocity vector.  N : the shape function matrix. 0R  : Matrix bulk densities. 
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Generalized densities are given by:     
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Once the elementary matrices of rigidities and masses are obtained, they will be 

assembled to build the global stiffness matrices and weight of the individual system: 
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        (5)   

Having obtained the analytical model of the beam structure, in the case of a sine wave 

excitation, the equation of forced motion can be easily derived.  

3 ENERGY  CHANGE INDICATOR 

Let y(𝑡) the signal of the dynamic response of a structure. This signal is decomposed by 

wavelets packets in a sum of subsignals 𝑦𝑗
𝑖 𝑡 , at the i

th
 level, as follows: 
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                        y(t) =  𝑦𝑗
𝑖2𝑗

𝑖=1 (𝑡)                                                                                      (6) 

The energy U stored in a sub-signal is given by: 

                         𝑈𝑗
𝑖 =   𝑦𝑗

𝑖(𝑡)2+∞

−∞
𝑑𝑡                                                                                  (7) 

Thus, the total energy 𝑈 of the signal is defined as being the sum of the energies  of these 

sub-signals  

                         𝑈 =  𝑈𝑗
𝑖2𝑗

𝑖=1                                                                                                (8) 

We consider the responses of the two structures healthy indexed h and damaged indexed 

d. For each structure, we define respectively the vectors hV  and dV   whose components are each 

the ratio of the sub-signal energy to the total energy of the signal at the level selected of wavelet 

package decomposition. 
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 From these last two vectors we define the relative energy variation vector as follows: 
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The MEV is defined as the maximum of the absolute relative energy variations (𝐸𝑉). 

4 NUMERICAL SIMULATION TEST CASES 

The composite beam structure represented in FIG.2 is composed of 3 layers glass∕époxy, 

disposed in the following configuration [𝟎∘/𝟗𝟎∘/𝟎∘]. 𝐓𝐡𝐞 beam is subdivided into 60 finite 

elements SI20 [3].  

 

 

 

 

FIG. 2 – Stratified composite beam 

The mechanical properties of the material are : E1 = 47.518 GPa; E2 = 4.588 GPa; G12 = 2.201 

GPa; μ12 = 0.0419; μ21 = 0.434; ρ = 1850 kg/m
3
. Its geometry is characterized by : L = 360 

mm, h1 = h2 =  h3 = 4mm, B = 30 mm.  

We consider two types of boundary conditions: a cantilever and a simply-simply supported 

beam. The damaged beam is simulated by reducing the longitudinal Young's modulus E2 of 

the middle layer of the finite element. 

h3 

L 

h1 

h2 

L B 
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For the first type of boundary conditions, the excitation is applied at its first node from the free 

end and for the second case of boundary conditions it is applied at the 25
th
 node. The 

excitation force consists of three components and it is applied normally to the beam at the 

node previously indicated: 

                                          𝑭𝒆(𝒕) = 𝑨𝟎 𝐬𝐢𝐧 𝝎𝟏𝒕 + 𝒔𝒊𝒏 𝝎𝟐𝒕 + 𝒔𝒊𝒏 𝝎𝟑𝒕   

The measurement frequency band must contain as many eigenmodes as possible, and the 

exciting force must be chosen to excite the maximum number of these. The temporal 

responses signals of healthy and damaged structures are decomposed by «db4» wavelets 

packets to the 5
th
 level. 

5 HOW TO DETERMINE DAMAGE THRESHOLD OF A STRUCTURE 

The strategy for determining damage threshold is highlighted through the stratified composite 

beam defined above in two cases of boundary conditions. 

5.1 CANTILEVER BEAM CASE 

To begin, we damage by 40% successively each element of the structure and we draw the 

MEV curve in terms the element number of the structure (FIG. 3).  

                  

FIG. 3 – Cantilever beam : Histogram of MEV – 40% damaged beam element number. 

The sensitivity of this indicator is variable according to the location of the defect. We choose 

on the FIG.3 element 6 which has the lowest value of MEV. We damage it at various rates 

and we seek in the waveband a combination of components of the exiting force which gives 

us the curve representative of MEV according to the rate of damage. This shape of the curve 

enables us to fix a priori a threshold of detectability of damages at the selected position (FIG. 

4). The threshold is fixed just under the point of inflection of the curve at 60% and the 

smallest rate of detectable damage of element 6 is thus approximately 22%. 

We obtain the same shape of the MEV-damage rate curve each time we change the position of 

the damaged element, the structure being always subjected to the same excitation as in the 

case of the damage of element 6, while varying the extent of the damage. This makes it 

possible to fix a threshold for each selected position of the damaged element.  We represent 

above for some elements the graphs of MEV according to the damage rate of the element.  

We maintain the same threshold of 60% for all the damaged elements and we take note of the 

smallest rate of detectable damage (FIG.5a). For element 12 for example, the smallest 

detectable rate is 20%; for element 18 it is 14%; for element 38 it is 12%.  
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5.2 SIMPLY-SIMPLY SUPPORTED BEAM CASE 

Let us consider the case of the simply-simply supported beam. In the same manner as we 

proceeded in the preceding case, we start by damaging by 40% successively each element of 

the structure. The histogram representing the MEV according to the damaged element number 

is given by the FIG. 4. 

 

FIG. 4 – Simply-simply supported beam : MEV histogram in terms  

of 40% damaged beam element number 

 

               FIG.5a - : Cantilever beam                  FIG.5b : Simply-simply supported beam 

FIG. 5 –Variation of MEV according to the damage rate. 

On FIG. 4  we choose element 46 and seek the good combination of the components of 

the exciting force giving the representative MEV curve. The threshold is fixed here at 40% and 

the smallest damage is located at approximately of 40%.  

For all the structures the threshold of MEV is fixed at 40%. Of each curve we take note of 

the minimum detectable rate of damage. Some curves are presented in FIGS.5.b. The threshold of 
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detectability is 35% for element 6; 38% for element 10; 44% for element 12 and 46 for the 56ème 

damaged element. 

FIG.5 give us detailed information about the variation of MEV according to the size of the defect 

for each case of structure with different damaged element, and help us locate the threshold of 

detectability for each one of them. We notice a correspondence between the data of the 

histograms and those of FIGS.5, i.e. the elements having low values of MEV on the histograms 

have a detectability threshold higher and vice versa. For example, on histogram 3, the value of 

MEV for element 12 is 20% and for element 28 it is 35%. On FIG.5, the damage is detectable 

from the value of MEV of 12% if the damaged element is the 38ème while it is detectable only 

from a MEV value of 20% for the élément12. The application of the method on the two types of 

boundary conditions gives us similar results. 

6 DAMAGE DETECTION-LOCALIZATION METHOD 

6.1 PRESENTATION OF THE METHOD OF DETECTING AND LOCALIZING 

DAMAGE IN STRUCTURES. 

Let  ty
 
be the dynamic response signal of the structure rebuilt after wavelet packet 

decomposition, according to formula (6). Its total energy U is given by the formula (8). Total 

energy structures, healthy and damaged, are designated by Uh
 and U

d respectively. 

First, we define nqVEPO  by the absolute value of the relative change between the total 

energy of the healthy structure U
e and that of the damaged structure U

e
, measured from the nq

th
 

node. 
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 (12) 

where j
kU  is the energy of the j

th
 sub-signal in the decomposition of the structure of the response 

by the k
th
 wavelet packet level. 

The response of the structure is measured in a single DOF. The principle of this procedure 

is to calculate the VEPOnq for two DOF belonging to the same element, and calculating the 

relative difference between them. 

Among the 20 DOFs of the SI20 finite element, we chose the two vertical DOFs of the 

ends of each element to measure the VEPOnq. The VEPO value estimated at the first DOF 

defining element q is affected by the index q and the second by the index q+1 (Fig. 6).  

 

Fig. 6.  Numbering of vertical DOF of the structure 

We then calculate, for each q element, an IVEPO indicator (Energy change indicator 

based on Wavelets Packets) defined by: 

   %100
-

%
1




nq

nqnq

VEPO

VEPOVEPO
IVEPO                                                                (12) 
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The application of our indicator for fault location on a structure requires as many sensors as the 

number of discretization elements. This, from a practical point of view, is a cumbersome burden 

for the structure and causes expensive implementation costs. An alternative to these constraints is 

to use a method for optimizing the number of sensors used and their positioning on the structure. 

In this work, the method of  H. Amdriambolona [3] for selecting DOF sensors and reconstituting 

the unobserved DOF is used. 

6.2 NUMERICAL SIMULATION TEST CASE 

We consider the composite beam structure of graphite/epoxy in Figure 7 having the configuration. 

It is discretized into 40 finite elements SI20, numbered 1 to 40 from the left to the right. 

 

 

 

 

 

 

Fig. 7.  Doubly simply supported layered    0/90/0 2  beam. 

The mechanical characteristics of the beam material are given by: 

E1 = 144,8GPa; E2 = 9,65GPa; G13 = 4,14GPa; G23 = 3.45 GPa; μ12 = 0.25; ρ = 1390 

kg / m3. 

Its geometry is characterized by: 

L = 15m; h1 = h3 = 0.25m; h2 = 0.5 m; B = 1m. 

In the numerical simulation tests that follow, we examine the sensitivity of the indicator in 

the case of the presence of two and three defects. 

In all tests, we adopt the same approach: 

- the simulation of damage to a component is performed by a 20% reduction of the 

longitudinal Young's modulus of the second layer (E2) and 5% of its transverse shear 

modulus (G23). 

- we excite all the structures in the same position (vertical excitation in the 20th node 

from the right end) with a single exciting force of the form. The dynamic response is 

calculated for the two structures, healthy and damaged.  

Among the 40 vertical translational DDL, we selected 23 sensors positions. For the 

simulation, we added random noise to simulate responses of both healthy and 

damaged structures using model: YBT y = (1 + gn × rand). 

Then, the responses of healthy and damaged structures are then decomposed by wavelet 

packet of order Daubechies 4 "db4" the 5th level. Then we calculate the IVEPO for 

each element and we represent IVEPO-number of the element of each test curves. 

 

A. Case of two damages 

We examine three cases of structures: each containing two damaged components: 

The first structure has its elements 23 and 24 damaged; the second is damaged in the 

elements 11 and 33 and the third is damaged in elements 6 and 37. Representative 

histograms are shown in Figures above. 

𝐿 
𝐵 

ℎ3 

ℎ2 

ℎ1 
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Fig.8. Histogram IVEPO-number of the element in the case of damaged items 23 and 24 

 

Fig.9. Histogram IVEPO-number of element in the case of damage to the elements 11 and 32 

 
Fig.10. Histogram IVEPO-number of element in the case of damage to the elements 6 and 37 

  

B. Case of three damages 

As in the first case, we simulate three damaged structures having each three damages. For 

the first, it is damaged in its elements 10, 13 and 22; the second, items 7, 10 and 35, and finally 

the third, we simulate damage to the 11th, 14th and 32nd element. The results of these tests are 

shown in the following figures. 

 

Fig. 11. Histogram IVEPO-element number in the case of damage to elements 10, 13 and 22 
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Fig. 12. Histogram IVEPO-number in the case of damage to elements 7, 10 and 35 

 

Fig. 13 Histogram IVEPO-element number in the case of damage to elements 11, 14 and 32 

7 CONCLUSION 

In this work, we propose a damage indicator based on the decomposition of wavelet packet 

responses to locate damage in composite beam structures in their first stage of development. This 

indicator is the relative difference between the total energy of the sub-signals of the healthy 

structure response and that of the corresponding ones of the damaged structure response. A 

resembling indicator proposed by Jian-Gang Han [4] is defined differently. The latter is equal to 

the sum of all relative energy differences of corresponding sub-signals of healthy and damaged 

responses included in the wavelet packets decomposition. 

The property of wavelet packets decomposition for denoizing signals is certainly of great help 

particularly in the case of laminated composite structures. 

As for the global threshold damage indicator is concerned, our contribution consists in finding a 

global threshold damage indicator rather than a particular one for a defined position of the 

damaged element in the structure as did Yam and al.  This global threshold damage indicator is 

useful to help ascertain whether results of the localization process are reliable or not. 
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ABSTRACT 

In the framework of its R&T activities, French Space Agency CNES has entrusted the study of the 
consequences of high velocity impact on a composite overwrapped pressurized vessels to two SMEs THIOT 
INGENIERIE and IMPETUS AFEA. The general context of this project is to study the vulnerability of a 
pressurized tank onboard spacecraft impacted by a projectile at high velocity. Tanks selected for this study 
are commercially available that consist of an aluminum liner and four composite layers made of carbon 
fibers and silica fibers. The impact tests, performed by THIOT INGENIERIE, were instrumented with 
suitable metrology in the field of shock to identify the main physical phenomena associated to the 
hypervelocity impact of a few grams aluminum ball on a pressurized tank. Numerical simulations of these 
impact configurations were performed with IMPETUS AFEA solver which is based on innovative and 
advanced numerical methods: High order Finite Elements, meshless method called γSPH. This unique 
approach has been fully implemented in 3 dimensions and represents the real geometry of the tanks (as 
opposed to 2D axisymmetric simulations). Performing comparison with experiment, numerical simulation 
reproduces the main physical phenomena identified in the experiments, as the 3D cracking failure modes. 
Although some items would need to be improved to better reproduce the physical mechanisms, the 
reliability of these calculations is sufficient to extrapolate these first results in a range of more 
representative impact operational applications (impact velocity > 15 km / s). Thus a method for analyzing 
such impact configurations is set to address the risk of tank loss or explosion and space debris generation. 
The proposed method to answer this question is to implement in a coordinated way, tests of impact on 
tanks, load calculations and material behavior characterization in the ranges encountered in these extreme 
impacts configurations. 
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1 INTRODUCTION 

Vulnerability of spacecraft to debris impacts 
is a burning issue which has led to many 
Research & Development actions in CNES, 
especially since the Loi relative aux 
Opérations Spatiales has entered into force 
in 2009. Indeed, hypervelocity impacts on 
satellite structure could lead to exponential 
increase of space debris which, in the worst 
scenario, would not allow to use anymore 
orbits for spacecraft operations. In that 
frame, CNES has started to study modelling 
of HVI on pressurized vessels since many 
years [1]. Even if tests could be done, 
modelling is not a small matter when 
dynamic reaches several km/s for impacts, 
coupled with hydrodynamic effects due to 
pressurized gas and with an appropriate 
model for composite behavior. Aim of this 
study was to work out a methodology to 
model theses effects and to correlate with 
dedicated tests. In order to reduce costs and 
to concentrate on phenomenon rather than on 
a specific part, tanks selected for this study 
are commercially available and not tanks 
dedicated for space applications. They 
consist of an aluminum liner and four 
composite layers made of carbon fibers and 
silica fibers. Approach is to build a general 
method that could be suitable to reproduce 
expected and observed effects. This method 
has to be usable in an industrial context and 
should be later implemented to extrapolate 
results for different velocity range and 
different pressure vessels configuration. The 
objective is to better assess risks of explosion 
of a tank submitted to different size of high 
velocity debris. 

2 SIMULATION APPROACH 

Finite elements methods widely spreaded in 
industrial simulation codes are limited to 
predict large deformations behaviors or 
phenomena localization. IMPETUS AFEA 
looked for new modeling solutions to be able 

to simulate a hypervelocity impact of an 
aluminum ball of few grams on a pressurized 
tank made up of aluminum liner and CFRP 
composite. IMPETUS AFEA solver is based 
on two innovative and advanced numerical 
methods:  

• High Order Solid Finite Elements 
• Meshless method called γSPH 

(Smooothed Particle Hydrodynamics) 
Originally developed to simulate gas and 
fluid behaviors, SPH method is used for 
impact simulation since 1996 [2]. This 
method is particularly adapted to 
hypervelocity impact on axisymmetric 
structure or small nonsymmetrical structure. 
SPH method drawback is a long calculation 
time and instability for high tensile stress. A 
full SPH approach is therefore limited to 2D 
case study and is not able to evaluate 
intermediate states between perforation, 
cracking and total explosion. IMPETUS 
AFEA focused on a more robust approach to 
predict large deformation and pressurized 
tank cracking: a third order solid finite 
elements formulation (64 integration points). 
γSPH [3] method remains the relevant 
method for the tank gas/fluid modeling.  

2.1 High order finite elements 

IMPETUS AFEA has developed a high 
order finite element approach for transient 
dynamics. The main features obtained are 
the following:  

• High precision for large deformation and 
plasticity. 

• Low finite elements sensitivity to a poor 
aspect ratio 

• No zero energy deformation mode (exact 
integration) 

• Simulation of inter elements cracks (node 
splitting) 

Given these characteristics IMPETUS 
AFEA approach is perfectly adapted to tanks 
modeling. 
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2.2 IMPETUS AFEA simulation 
approach for hypervelocity impacts 
on pressurized tank.  

An innovative approach that couple γSPH 
and high order finite elements is proposed 
and illustrated in Figure 1.  

 
Figure 1. Modeling approach 

The projectile is described by the γSPH 
method to keep its exact mass and simulate a 
“cloud” generation. 
Internal gas or fluid modeling is also based 
on a γSPH formulation to take properly into 
account interactions between fragments in 
the fluid and the propagation of the shock 
wave generated by the impact. 
Tank structure model is based on a high 
order finite elements approach. This 
approach enables to simulate advanced 
mechanisms like aluminum cracks and 
composite damages and delamination. 

2.3 Composite structure modeling 

2.3.1 Intra lamina modeling 

IMPETUS AFEA solver uses an advanced 
method to predict damage evolution in the 
fibre reinforced plastic (CFRP) structure. 
This method is based on unidirectional 
lamina damage functions derived from 
Hashin criteria [4], damage variables growth 
rates governed by a damage rule suggested 
by [5], a damage coupling functions 
described hereafter, a node-splitting 
formulation to enable crack propagation and 
a strain-rate dependent functions for the 
elastic moduli. 
Three damage functions are used for fiber 
failure, one in tension/shear, one in 

compression, and another one in crush under 
pressure. They are chosen in terms of 
quadratic strain forms as follows.  

• Tension/Shear: 

(1) 

• Compression: 

         (2) 

              (3)        
• Crush: 

     (4) 
Where a, b, c are the fiber direction, 
transverse direction and out of plane 

direction,  are Macaulay brackets,  
and  are the tensile and compressive 
strengths in the fiber direction, and  and 

 are the layer strengths associated with 
the fiber shear and crush failure, 
respectively.  
Matrix mode failures must occur without 
fiber failure, and hence they will be on 
planes parallel to fibers. Two matrix damage 
functions are chosen: 
 

• Transverse compression mode: 

        (5) 

• Perpendicular matrix mode:  

(6) 

where  is the transverse tensile strength, 
 and  are the shear strength values 

of the corresponding tensile modes  or 
). Under compressive transverse strain 

(  or ), the damaged surface is 
considered to be “closed”, and the damage 
strengths are assumed to depend on the 
compressive normal strains based on the 
Mohr-Coulomb theory:  
                             (7) 
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Where  is a material constant as  is 
similar to the coefficient of friction.  
The damage thresholds, , j = 1,2,3,4,5 have 
the initial values equal to 1 before the 
damage initiated, and are updated due to 
damage accumulation in the damage modes. 
A set of damage variables  with i = 1, …6, 
are introduced to relate the onset and growth 
of damage to stiffness losses in the material. 
The compliance matrix [S] is related to the 
damage variables as [5]: 

 (8) 
The stiffness matrix C is obtained by 
inverting the compliance matrix. 

As suggested in Matzenmiller et al. [5],  
is governed by the damage rule: 

                (8) 

where the scalar functions  control the 
amount of growth and the vector-valued 
functions qij (i=1,…6, j=1,…5) provide the 
coupling between the individual damage 
variables (i) and the various damage modes 
(j). Five damage modes are taken into 
consideration in this model. 

       (9) 

Equation (9) gives evolution law. mj is a 
material constant for softening behavior. 
The damage coupling functions qij are 
considered for the unidirectional and fabric 
models as: 

            (10) 

2.3.2 Inter lamina modeling 

Cohesive links method is used to simulate 
delamination. Cohesive links are 
implemented between each composite plies 
and between the first composite ply and the 
aluminum liner.  

3 TEST FACILITY AND 
INSTRUMENTATION PLAN 

3.1 Existing facilities and previous works 

Based on IADC works, hypervelocity 
phenomenon is defined for a velocity higher 
than typically 1km/s. With this velocity, 
projectile and the target are severely 
damaged in impacted areas. Some works 
have been previously achieved performing 
HVI on tanks, among them NASA 
laboratories (USA) and EMI (G) have 
performed HVI tests (Vp~6.5 km/s) on 
metallic tanks (aluminum and Titanium) 
pressurized up to 25 bars, with high-velocity 
camera. HVI up to 8 km/s could be reached 
by double-stages laboratory launcher using 
gas, without damaging the projectile. Other 
technologies like 3-stages launchers or 
explosive launchers could reach velocities 
higher than 8 km/s but most of the case 
without keeping integrity of projectiles.  
For this tests campaign, the double stage 
launcher HERMES in THIOT INGENIERIE 
has been used.  

3.2 Phenomena to be characterized 

HVI effects on tanks could be depicted in 3 
phases: 

• Hydrodynamic: energy transmitted by the 
target and contained by the projectile will 
diffuse, creating a shock wave which will 
allow transfer kinetic energy from 
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projectile to target. Hemispheric crater 
arises and ejection of material starts. 

• Shock damage: the spherical shock will 
propagate, with attenuation, which leads 
to damage the target: plastification or 
fragmentation, depending on ductility or 
fragility of the material. 

• Damage by reflected shock wave: 
propagation and reflection of shock 
waves could even lead to plastification of 
thin targets under high velocity 
conditions, near free surface. 

Figure 2. Illustration of impact phenomena 

3.3 Instrumentation plan 

In order to bring out the different steps and 
associated parameters, following metrology 
has been implemented: 

• Velocity laser barrier to record impact 
velocity 

• Deformation gauge to characterize CFRP 
tank deformation. 

• Interferometer (PDV or VH system) to 
measure local material velocity 

• Flash X-Ray 150 keV to characterize post 
impact cloud of fragments.  

Instrumentation has been changed between 
the first two trials and the five remaining in 
order to improve information recorded 
relative to fragments cloud and to guarantee 
a sufficient number of measurement points. 

 

 

 

 

 

 

 

Figure 3. Instrumentation used for end of 
test campaign 

3.4 Test plan 

Test campaign has been based on 7 impact 
trials and one quasti-static trial without HVI. 
Hereafter are descripted the parameters 
associated to each trial. 

Test ID Projectile 
velocity (m/s) 

Nitrogen 
pressure (bar) 

#HE0183 4334±60 1 
#HE0184 4425±60 200 
#HE0187 4322±60 250 
#HE0188 4310±60 300 
#HE0208 4638±120 1 bar Water 
#HE0212 No HVI : quasi-

static explosion 
687 

#HE0213 4341±40 400 
#HE0214 4410±40 500 

Table 1. Trial parameters 

Used projectile is a 8mm diameter aluminum 
ball, projected with velocities around 4350 
m/s and a normal incidence. Internal 
pressure is varying from one trial to the 
other, in order to determine if there is a 
threshold beyond which the impact leads not 
to perforation but to an explosion of the 
CFRP tank. 
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3.5 Test results 

3.5.1 Quasi-static burst pressure test 
(#HE0212)  

This reference test, performed to rescale the 
tank model, has led to a burst pressure 
determination of 687 bar. Nonlinear 
behaviour of the tank has been highlighted 
with a non-homogeneous deformation of the 
tank when pressure exceeds 300 bar. To 
explain this phenomenon, following 
assumptions have been made: 

• Local strain of supports on which were 
glued the gauge (external coating and 
CFRP plies) 

• Non homogenous strain of CFRP plies 
• Pre-stresses of CFRP lies with non-

uniform thicknesses on metallic liner 
which could also have variable thickness. 

Figure 4. Strain vs. Pressure 

3.5.2 Impact tests 

First test has been performed without 
pressure in the tank to start with a reference 
configuration. Pressure has been 
progressively increased for the following 
trials, until 500 bars. Only one trial has been 
performed with the CFRP tank filled with 
1bar water, in order to increase shock 
pressure effects in fluid with respect to 
structural deformation. This trial has led to a 
simple perforation of the tank with a hole 
diameter higher than with gaseous 
configurations. However shockwave could 
not be characterized under this condition, 
due to water density not compatible with 
instrumentation. 

 
Figure 5. Perforation of tank with large 

mushrooming for trial with water #HE0208 

After impact tests on Nitrogen pressure 
tanks, they are splitted in 3 or 4 main pieces, 
with numerous fragments of fiber composite. 
Whereas the tanks have been deeply 
damaged, they have not exploded. Shock 
wave in pressurized gas has been 
highlighted.  

 

Figure 6. X-Ray diagnosis for trial #HE0184 
at 200 bars 

This wave foreruns the cloud of fragments 
and attenuates progressively along its 
propagation. Moreover, it has been shown 
that cloud of fragments generated by HVI is 
slow down by pressurized gas. No fragment 
has reached opposite surface to impact point 
except for trial #HE0184 at 200 bars. In 
velocity diagram for test #HE0184, origin of 
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diagram is taken as impact of the ball on the 
tank, thus compression wave is observed at 
84µs.  

 

Figure 7. Velocity diagram of rear face for 
trial #HE0184 

3.5.3 TEST CAMPAIGN SYNTHESIS 

When comparison is performed between 
relevant trials on rear face velocity reached 
perpendicular to impact point, same events 
are observed at the same time.  

 
Figure 8. Free surface velocity vs. time 

First two oscillations correspond to structural 
deformation due to compression/relaxation 
waves. Then around 85µs, higher oscillations 
are highlighted which could be linked to 
creation of shock wave transmitted in 
pressurized gas. 

It is worth to notice that damage state of tank 
after impact is deeply correlated to pressure 
level. Preload of metallic liner by composite 
winding under pressure drives mainly the 
failure mode of the tank. 

 

 
Figure 9. Overview of highly pressurized 

tanks after HVI 

The ball perforates CFRP layers (also 
metallic liner) and near the impact, preload 
of the liner decreases due to damage of the 
CFRP which was sustaining the pressure 
loads. Finally it leads to inject high stress 
directly on the liner which causes its 
breakdown. 

4 MODEL SET UP AND 
SIMULATION RESULTS 

4.1 Model set up 

To model hypervelocity impact on a 
pressurized tank, a strong gas/tank coupling 
has to be taken into account. Several issues 
that lead the model set up can are described 
below. 

Nb of pieces Central fragment width 
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4.1.1 Impact behavior with a 1 bar 
pressurized tank. 

A first 3D model has been developed to 
validate the qualitative behavior of a 
hypervelocity impact on an empty tank (3 
order high order finite elements model). The 
main simulation difficulties of this model 
are: 

• The very large deformations  
• Free edges creation (fragmentations 

or cracking) 
• Simulation stability 

The model predicts well the tank 
fragmentation, its energetic balance is 
relevant. Figure 10 shows simulation and 
experimental results.  

 

Figure 10. Simulation and experimental 
results. 

4.1.2 Tank pressure initialization 

Next step is to validate the quasi-static state 
before tank impact. Tank pressure 
initialization is fulfilled through a 3D model 
coupling High order(tank) and γSPH(gas) 
methods. A relaxing dynamic method 
(damping) is used to obtain a steady state. 
The pressurized tank steady state is validated 
comparing the coupled model obtained with 
a simple finite element model (linear static 
without gas).  

4.1.3 Full fluid/structure coupling for 
impact simulation. 

A full coupled 3D model SPH/EF based on 
the first 3D model presented in 4.1.1 is done 
to validate the SPH/EF methods coupling. 
Simulation shows a hypervelocity impact 
behavior as well as the tank fragmentation 

and the gas shock wave qualitatively 
representative of the physical phenomena.  

 
Figure 11. Cut view of a simplified coupled 

model SPH/EF. 

4.1.4 Prestressed quasi-static state  

Aluminum liner is prestressed during the 
composite layering. This prestressed state is 
taken into account adding a thermal load on 
aluminum liner that induces 80% of 
aluminum yield strength at 300 bars. To 
define this initial state a full 3D coupled 
model is developed. This model is used later 
for 3D impact simulations. 

 
Figure 12. Tank prestress initialization.  

4.1.5 2D simulations  

2D plane models are developed: 

• To set experimental parameters (projectile 
size, velocity and mass) to obtain the 
desired failure mode (tank explosion) 

• To identify a relevant mesh size for the 
3D model (particularly for SPH elements) 
to simulate properly gas/structure 
coupling and to value precisely the 
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coupled method representativeness from a 
qualitative point of view. 

Figure 13. illustrates 2D model results.  

 
Figure 13. 2D model simulation of the tank 

explosion. 
Such 2D models enable to simulate several 
cases in a reasonable time scale.  

4.1.6 Damage parameters calibration 

Damage models parameters have been 
identified thanks to literature data.  
Full 3D model is readjusted through 2 
impact tests (Case 1: 8mm ball, 4500m/s 
speed and 1 bar pressure, see trial #HE0183. 
Case 2: 8mm ball, 4500m/s speed and300 
bar pressure, see trial #HE0188). This 
approach limits the model predictability. A 
complete identification phase should be 
performed for industrial use. 

4.2 3D Simulation results 

Main failure mechanisms are well predicted 
by IMPETUS AFEA 3D model (cloud 
propagation and shock wave). Figure 14 
show a predicted wave front delay. This 
delay is not observed at t=13µs (left part of 
Figure 14) but at 28µs (right part of Figure 
14). Two factors could explain this delay: a 

too rough SPH elements meshing or/and a 
state equation not precise enough.  

 

Figure 14. Simulation vs. test wave front 
comparison. 

Failure modes of experimental cases that led 
to a simple tank perforation without a total 
explosion are well predicted in simulations. 
Figure 15 and 16 show that coupling 
between aluminum ductile behavior and 
composite fragile behavior that leads for the 
highest energy cases to a longitudinal cracks 
until bifurcation points and a total tank 
explosion is well simulated as well. 

 
Figure 15. 300bars, 20000m/s, t=100 µs. 

 
Figure 16. 300bars, 4500m/s, t=200 µs. 

Mean computational time is 12 hours 
(1CPU+1GPU). The development of an 
axisymmetric SPH approach on a GPU 
(Graphics Processing Unit) should reduce 
computational time to 1h. 
Simulations show total energy conservation.  
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5 CONCLUSION 

Simulations performed by IMPETUS AFEA 
software have shown that using innovative 
methodologies (Lagrangian and γSPH) is 
appropriate to model properly the physical 
phenomena identified during experiments 
performed by THIOT INGENIERIE: 

• Perforation of front face of the tank and 
mushrooming correlated to pressure level. 

• Generation of a cloud of fragments which 
will be progressively slow down by the 
gas, depending on pressure level 

• Generation of a shock wave in 
pressurized gas, which foreruns the cloud 
of fragments 

• Generation of a structural deformation 
wave in the tank 

• Damage and fragmentation of the tank 
correlated to the pressure level. 

Total energy conservation has been 
respected. Time calculations while important 
(~ 12h) are realistic from an industrial point 
of view and can be significantly reduced 
using a SPH axisymmetric method. 
IMPETUS AFEA simulation method has the 
potential to well assess risks of tank 
explosions submitted to different kind of 
high velocity debris, efforts have to be done 
on its predictability. A complete damage and 
material parameters identification has to be 
fulfilled for any industrial use. 
Next step would be to consider a typical 
spacecraft tank which characteristics are 
slightly different from the tank considered 
here, particularly in term of structure (thinner 
liner, thicker composite). 
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ABSTRACT

This work deals with experimental measurements of the viscoelastic properties of a Shape Mem-
ory Polymer (SMP). The material has been previously analyzed using Dynamic Mechanical
Analysis in the [0.1 − 180]Hz frequency range and the [0 − 90] ˚ C temperature range. In
this work, the measurement has been extended to the [200 − 3000]Hz frequency range and
[20 − 80] ˚ C temperature range thanks to a High Frequency Viscoanalyzer (HFV). Among the
major novelties of this work, this is the first time that this viscoanalyzer is used over the ambi-
ent temperature for a full measurement campaign ; the SMP properties have been found over
a large frequency and temperature bandwidth without time-temperature superposition (TTS)
assumption. Finally a plate with aluminum skins and a SMP core has been designed from
the knowledge of the core’s behavior, and the model has been experimentally validated. This
campaign highlights the uncertainties on the damping properties of the material especially for
the lowest loss factor values. It seems that, in these conditions, modal tests combined with
identification, might improve the results.
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1 INTRODUCTION

Composite structures are designed to ensure several functions such as stiffness, damping, resis-
tance, mass reduction, thermal or acoustic insulation, etc. To achieve these multiple functional-
ities, the use of ”exotic” materials can be helpful. Shape memory polymers (SMPs) are ”smart”
materials which have the remarkable ability to recover their primary shape from a temporary
one under an external stimulus. SMPs encounter a growing interest over the past ten years, in
particular because of their eventual bio-compatibility. They also present many benefits because
of their controllable damping property. In this study, the chosen polymer is the tBA/PEGDMA,
a chemically cross-linked thermoset. It is synthesized via photo polymerization (UV cur-
ing) of the monomer tert-butyl acrylate (tBA) with the crosslinking agent poly(ethylene gly-
col) dimethacrylate (PEGDMA) and the photoinitiator 2,2-dimethoxy-2-phenylacetophenone
(DMPA) [1].

In a previous work, the dynamic mechanical characterization of this SMP has been per-
formed using a Dynamic Mechanical Analyzer (DMA50) from Metravib-ACOEM Company
on the [0.1 − 180]Hz frequency range and [0 − 90] ˚ C temperature range. This first experi-
mental campaign highlights promising damping properties controllable by the frequency of the
mechanical loadings and the temperature field, see P. Butaud et al. [2]. In order to design a
sandwich structure composed of two aluminum skins and a SMP core, the properties have to be
extended to larger frequency and temperature domains. This has been first done thanks to the
time-temperature superposition (TTS) assumption.

To validate this hypothesis and to improve our knowledge about the SMP properties,
a High Frequency Viscoanalyzer (HFV), see F. Renaud et al. [3], has been used to measure
the shear properties of the SMP on the [200 − 3000]Hz frequency range and [20 − 80] ˚ C
temperature range. The SMP properties are first identified using a lumped-mass model of the
HFV system thanks to Least Mean Square minimization between the test and the simulation
results. This allows comparing the results obtained from the DMA and the HFV. Since their
operating conditions are different, there are only few couples of temperature-frequency values
available, thus the TTS is also used to extend the comparison.

To follow, the SMP datas are used to simulate the behavior of a composite plate consti-
tuted with aluminum skins and a SMP core. This sandwich plate has been manufactured and
tested in modal analyses. The comparison between tests and simulations highlights distances
between the experimental and the simulated modal damping. The updating of the loss factor
values is discussed, in section 3.

As a perspective of this work and in order to extend the measurement frequency range of
the HFV, one can use a more realistic model that accurately takes into account the eigenmodes.
This opportunity is discussed in the paper. To conclude the talk, the design of the HFV and the
post-processing improvements will be discussed.

2 SET-UP DESCRIPTION

The High Frequency Viscoanalyzer (HFV), developed by the F. Renaud et al. [3] aims at provid-
ing frequency dependent properties of viscoelastic materials over a large frequency bandwidth.
This bandwidth starts between [100− 200]Hz and stops between [2000− 5000]Hz according to
the stiffness of the specimen.

To measure the viscoelastic properties of the materials, two kinds of setups can be used.
Oberst-like setups are based on the analysis of the Frequency Response Function (FRF) of a
normalized specimen. This procedure is defined in ASTM-1998 [4] or in ISO-1994 [5]. The
latter is generally a multi-layered beam or a multilayered plate constituted with weak viscoelas-
tic layers and stiff elastic layers. The damping properties of the specimen are post-processed

2
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from the FRF; its stiffness properties are deduced from the resonance frequency. Unfortunately
this method is really efficient if a model, that allows to compute the strain field all over the
specimen, is available. Moreover, even if this model is available, it is impossible to ensure an
homogeneous strain field in the viscoelastic layer. Thus this method is mainly used to mea-
sure the linearized properties. Furthermore, as the signal-to-noise ratio is better close to the
resonance frequency, this method only provides confident datas around resonance frequency.

The second kind of setup aims at measuring variations in material properties versus
temperature, excitation frequency and imposed strains. It is based on quasi-static excitation,
which means that no controllable vibration eigenmodes belongs to the frequency bandwidth of
the test. Due to this specificity, it is strongly different to Oberst-like setups. Metravib, MTS
or Bose Dynamic Mechanical Analyzer use hydraulic or electromagnetic actuators to load a
specimen dedicated to pure traction, compression, shear. The specimen has to be loaded thanks
to specific test fixtures dedicated to each kind of test. Our purpose has been to miniaturize
such kind of testing device, see Figure 1. The actuators has been replaced by piezo-actuators
provided by PhysikInstrumenteTM. The test fixture is dedicated to pure shear loading ; to achieve
this goal, the setup has three symmetry planes and four specimens, see Dion et al. [6]. Moreover,
a bolt is used to preload the setup along the transverse direction. This allows to perform shear
measurements according to transverse preload. Six accelerometers are used to measure the
accelerations. From these datas, the strain of the specimens are post-processed; two load sensors
are used to measure the dynamic shear loading applied to the specimens.

P842.10 from piezoceramics Steel Support Aluminium Connector 

Aluminium Vise Load Cell B&K 8200 Load sensor 

Figure 1: Left : 3D CAD view of the HF-DMA. Right : Finite Element mesh of the setup :
around 105 tetrahedron quadratic elements (T10).

2.1 Post-processing of the test

The stress-strain ratio, i.e. the shear modulus, might be computed thanks to the following
relationships. If the shear stress σ12 is supposed to be uniform in the specimen, it is defined by
:

σ12 =
F

S
, (1)

where F is the effective load applied to the steel support, see Figures 1 and 2 and S is the section
in the plane orthogonal to the shear plane. Assuming that the shear strain ε12 and the distortion
γ are also uniform in the specimen, one has:

2ε12 = γ =
u

t
, (2)

3
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where u is the effective displacement of each support and t is the thickness of the specimen, see
Figure 2.
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Figure 2: Left : Lumped Mass Model of the HFV. Right : Dimensions of the specimens.
Schema of the test fixture.

The shear modulus is defined as the ratio between the shear stress and the distortion:

G =
σ12
γ

=
F

u

t

S
. (3)

However, the shear modulus can not be estimated from the sensors signals processed using
Equation (3), because of inertial load effects due to the equipment. The Newton equation ap-
plied on the sensor leads to the expression of the stiffness of the specimen:

KS =
ω2((MS1 −MR)û2 +MS2û5)− 2F̂FS

2û2 + 2û5 − û1 − û3 − û4 − û6
, (4)

where ûi is the Fourier Transform of the ith accelerometer divided by the excitation angular
frequency ω. Using the previous definitions, the shear modulus is defined according to ac-
celerometers and load sensors measurements:

G = KS
t

S
. (5)

This post-processing can be done at each frequency of excitation in order to build the frequency
dependence of the complex shear modulus G∗(ω). As shown in Figure 3, the signal is rather
good between 200 Hz and 2500 Hz. Below this frequency bandwidth, the acceleration are not
large enough and the accelerometers are not sensitive enough, thus the signal is noisy. Above
this bandwidth, the first excitable eigenmode (2500 Hz) is visible and prevents direct reading of
the phase and modulus.

4
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Figure 3: HFV results : absolute value and angle of the complex shear modulus of the
tBA/PEGDMA according to the frequency.

A comparison has been done between these HFV measures and those obtained using a Dynamic
Mechanical Analyzer (DMA50). The elastic modulus of the HFV results is directly deduced
from the shear modulus thanks to the the Poisson’s ratio of 0.37 determined in a previous study
[7] using a quasi-static test:

E∗(ω) = Eĥ∗(ω) = 2G∗(ω)(1 + ν) = 2Gĥ∗(ω)(1 + ν) , (6)

where ĥ∗ is the constitutive parameter of the viscoelastic model that translate into the frequency
dependence of the material. This direct relation could be discussed because of the possible
frequency dependence of the Poisson’s ratio which is common for polymeric materials [8]. The
use of compression measurement and shear measurement in the same frequency bandwidth
may answer to this question. Unfortunately, the actual results have been obtained at different
frequencies. Figure 4 shows the comparison between the two measurements methods through
the master curve obtained by the TTS principle, used to extend the comparable frequency band.
These results highlight the fact that both campaigns (DMA-TTS and HFV) provide close results.
Looking to the master curves more carefully, we detect the 2500 Hz eigenmode on the right and
the noise on the left which make the master curve growing up for each temperature. These
artificial values are always in the same frequency ranges and can be easily removed. Moreover,
there is a distance between the curves because, for both DMA and HFV tests, it is quite hard
to stabilize the temperature. This leads to uncertainties on the storage modulus and on the loss
factor, especially when the loss factor variation are really important, around f.aT = 103 Hz.

5
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3 MODAL ANALYSIS AS CHARACTERIZATION TEST

In a previous study, it has been shown that a modal analysis is interesting to characterize a SMP
in high frequency but it is limited in temperature because of the very low stiffness of the ma-
terial near the glass transition temperature [9]. An alternative technique is proposed here, by
performing modal analysis on a SMP composite structure.
The structure which has been tested is shown in Figure 5. This composite sandwich has been
experimentally and numerically studied. The sandwich was in free-free conditions, a broad-
band random excitation was applied on [100 − 10000] Hz frequency range. The details of the
elaboration of the SMP core sandwich and the experimental tests can be found in [10].

Figure 5. Sandwich structure used in numerical simulation and in experimental tests.

The composite sandwich has been tested between 0 and 130 ˚ C every 10 ˚ C (±1 ˚ C). Thanks
to the aluminum skins which strengthen the structure, the measurements near the glass tran-
sition temperature (between 45 ˚ C and 75 ˚ C according to the frequency) have therefore been
possible. Results are obtained experimentally but also through numerical simulations. The
simulation parameters are detailed in [10]: the expression of the SMP complex modulus comes
from a 2S2P1D model [11] based on the DMA TTS; the mechanical properties of the aluminum

6
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skins (E = 70000 MPa and η = 10−4) are taken from the literature [12]. The results of four
representative temperatures are presented on Figure 6.
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Figure 6. Experimental and simulation results at 20 ˚ C, 50 ˚ C, 80 ˚ C and 130 ˚ C.

Given the uncertainties on the thickness of the sandwich and on the gluing skins, a good corre-
lation is obtained. A relative distance ε defined by

ε =
1

n

√√√√ n∑
k=1

(
f simu
k − f exp

k

fsimu
k +fexp

k

2

)2

, (7)

with n the number of eigenfrequencies measured, is evaluated at 20, 50 and 130 ˚ C; firstly on the
eigenfrequencies, and secondly on the modal damping ratios obtained using a classical modal
identification technique. This evaluation was not performed for 80 ˚ C because of the impressive
damping capacities of the SMP which smooths all the resonances. The relative distance on the
eigenfrequencies is less than 1% at 20 ˚ C, and around 3% at 50 and 130 ˚ C, the Finite Element
model with the material datas is so quite representative concerning the stiffness properties of the
composite sandwich. The relative distance on the modal damping ratio is less than 10% at 20 ˚ C
but up to 70% for high temperatures. These significant errors on the damping properties can be
explained by the large uncertainties on the SMP loss factor values implemented in the FE model.
The loss factor values obtained by DMA-TTS are precise at around 50% which is problematic
near the glass transition temperature where the loss factor variation are really important; such
uncertainties on the loss factor, implemented in the finite element model, permits to bound the
modal damping values.

The main conclusions of the comparison between modal tests and simulation based re-
sults with DMA datas is that: stiffness in quite well identified from both experimental tech-
niques; damping is harder to identify. To our opinion, the DMA techniques are more suitable

7
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in order to identify high loss factors, whereas modal tests are more suitable for lowest loss fac-
tors. In order to improve the results, a FEM-based post-processing can be used to identify the
material.

4 CONCLUSION

This paper shows results from measurements of viscoelastic properties coming from classical
DMA analysis, HFV analysis and Oberst-like analysis. Each device is able to provide tem-
perature dependent results. This is a novelty for the HFV. Let’s notice that for the HFV, the
temperature range would be extended by the uses of specific piezo actuators. Each device pro-
vides interesting results in a specific domain. DMA is able to give results by direct analysis
at low frequency. Its results may be extended using TTS. HFV give direct results at higher
frequency. Modal analysis can give complementary results for the lowest and highest reduced
frequency when the loss factor is small. An ongoing work is to extend the frequency range and
reduce the uncertainties by using FEM-based post-processing.
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ABSTRACT

The vibration and noise of a structure can be mitigated by controlling the power exchange
between the excitation and the remote parts. An implementation is to integrate piezoelectric
materials into the host structure and to design the associated electric impedance in order to
control the energy flow. In this work, built-up structures with periodical piezoelectric shunts
are considered. Major efforts are devoted to develop a rapid and accurate numerical tool
for the evaluation of the energy flow in this kind of built-up structures. In this method, Wave
and Finite Element Method (WFEM) is employed to model the periodic substructures while
Finite Element Method (FEM) is used to capture the non-periodic substructures. A modal
reduction technique is introduced to WFEM accelerate the wave basis calculation. Validations
are presented, attesting the accuracy of he proposed method. An application is given, where
energy flow of a infinite structure with resistive piezoelectric waveguide is presented.
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1 INTRODUCTION

To control the energy transmission through the excitation to the remote parts, one method is to
periodically distribute piezoelectric patches with identical circuits between the source (termed
near-field substructure) and the remote parts (termed far-field substructure), shown in figure
1. This idea was considered in [1] and [2] to reduce the vibration in rotational components in
aero-engine. It has been shown that periodically distributed piezoelectric shunts can control the
localized vibration in near-periodic structures [2] and also can reduce the response to the engine
order excitation in periodic structures [1]. Alternatively, the wave perspective was considered
in [3, 4], where the functions of piezoelectric patches are to reflect the injected waves or to wel-
come the waves and dissipate them. To evaluate the performance of the piezoelectric waveguide
as a component in a built-up structure, a numerical tool for the forced response and energy flow
in these built-up structures are required.

Figure 1: Illustration of the considered piezoelectric-based built-up structures

In this work, a hybrid finite element method (FEM) /wave and finite element method
(WFEM) is developed to determine the forced response and energy flow of built-up structure
with periodic piezoelectric patches. The near-field is supposed to be non-periodic so it is mod-
eled by FEM. The piezoelectric substructure and the far-field are regarded as waveguide and
they are modeled by WFEM. By WFEM, the dynamics of the periodic waveguide would be
analyzed by only considering one segment of it, hence the computation time is saved. The en-
gineering example is shown in figure 2 where a car chassis is considered. The domain near the
engine can be regarded as near-field while the car body connected to the frame can be treated as
far-field. Piezoelectric patches can be periodically bonded to the frame so that it can be treated
as a periodic waveguide.

Specifically, a modal reduction approach is introduced into the WFEM to accelerate the
wave basis calculation. It is useful especially when the DOFs of the cross-session are numer-
ous. Moreover, only the DOFs of the FE modeled near-field will be kept while the ones of the
waveguides will be eliminated eventually. Then the response and energy flow can be obtained
by post-processing in a multi-scale manner. The far-field substructure can be both finite and
infinite, so this method is applicable in both mode-dominated (low frequency ) cases [5] and the
wave-dominated (mid- and high frequencies) cases [6].

In the following sections, firstly the enhanced WFEM is briefly introduced. Then the
way to adapt the WFEM modeled waveguides into the FEM modeled near-field is presented. A
validation is presented where finite far-field substructures are considered and each piezoelectric

2
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Figure 2: An engineering example of the considered structures

patch is shunted by an identical Resistor-inductor circuit. At the end an application is presented
where the energy flow to a infinite far-field is presented.

2 ENHANCED WAVE AND FINITE ELEMENT METHOD

2.1 Modal condensation of a unit cell

In WFEM, the dynamics of the whole periodic waveguide can be described only by analyzing
one unit cell of the waveguide thanks to Bloch theorem. The dynamics equations of a unit cell
in the periodic waveguide can be formed by any existed FEM package and they write[

Hii Hib

Hbi Hbb

](
qi

qb

)
=

(
0
fb

)
(1)

where superscripts i and b respectively refer to the internal and the boundary DOFs. Split-
ting boundary DOFs on left (subscript L) and right (subscript R) interfaces, it gives qb =(
qT

L qT
R

)T and fb =
(
fT

L fT
R

)T. The terms are illustrated in figure 3. Then the internal
DOFs would be condensed so that equation (1) becomes

Dqb = fb (2)

where
D = Hbb −HbiH

−1
ii Hib (3)

Figure 3: Illustration of the unit cells in a waveguide

3
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Searching for the inverse of Hii might be time consuming once the number of the internal
DOFs is large. Alternatively, it is better to firstly reduce the dimension of the matrices before the
condensation as proposed by [7]. In their work, the Craig Bampton method for modal reduction
was employed on all the internal DOFs. Here the major concern is that not all the DOFs in
qi is suitable to be transferred to modal space and be reduced. The DOFs associated with
the electric field are better not to be transferred into the modal space. There are two reasons.
Firstly the impedance of the electric circuits need to be changed in the calculations so as to
evaluate the performance under different parameters. If they are transferred to the modal space
it would be difficult to change the corresponding modal impedance for each retained modes
[3]. Otherwise the modal transformation need to be performed once again, after each electric
impedance modification. Secondly, if electric impedance are considered in the shunted circuits,
the dynamic stiffness matrix can no longer be diagonalized by the open-circuit or close-circuit
modal shapes. Consequently the modal coordinates might be coupled with each other due to
non-diagonal damping terms, then simply remove the modes with higher natural frequencies
might induce unexpected errors.

For these reasons, we rewrite array qi into
(
qT

c qT
n

)T where qc represents all the
mechanical DOFs and qn for the electric ones. Then only the DOFs in qc are transferred into
the modal coordinates y by

(
qi

qb

)
=

 qc

qn

qb

 =

Ψ −K−1
cc Kcn −K−1

cc Kcb

0 I 0
0 0 I

 y
qn

qb

 (4)

where Ψ =
[
ψ1 ψ2 · · · ψl

]
. ψk is the kth natural mode of the unit cell with all rest DOFs

fixed (qb = 0 and qn = 0) and the corresponding natural frequencies is ωk. Specifically, ψk and
ωk with k = 1, 2, · · · , l are obtained as the eigenvectors and eigenvalues of(

Kcc − ω2
i Mcc

)
ψi = 0 (5)

Only l modes are kept in Ψ, and the number is less than that of qc. The criterion for the
selection of the retained modes is ωk < 3ωm where ωm is the maximum excitation frequency to
be considered. Introduce the transformation (4) into equation (1), the dynamical equations can
be reduced to Ĥcc Ĥcn Ĥcb

Ĥnc Ĥnn Ĥnb

Ĥbc Ĥbn Ĥbb

 y
qn

qb

 =

 fy

fn

fb

 (6)

where

Ĥcc =

. . .
1− ω2

k + 2jξkωk

. . .

 (7)

Then the electromechanical coupling is already integrated into matrix H in the FEM procedure.
While the electric impedance matrix Z can be introduced by adding relation fn = −Zqn in
equation (6). Eliminating y and qn in equation (6) when no external forces are applied to the
internal DOFs (fy = 0 and fn = 0), we can also obtain the same form as shown in equation (2)
by

D = Ĥbb − ĤbiĤ
−1
ii Ĥib (8)

where

Ĥii =

[
Ĥcc Ĥcn

Ĥnc Ĥnn + Z

]
(9)

4

243/361



DYNCOMP’2015 2-4 June 2015, Arles (France)

Less computational cost are required because Ĥii is a sparse matrix with a much smaller size in
comparison with Hii.

2.2 Wave basis: a selected set of characteristic waves

According to Bloch theory, the free wave of the form ejωt−kx that travels in the periodic structure
should satisfy the condition

q
(n)
R = λq

(n)
L (10)

while the equilibrium implies that
f

(n)
R = −λf (n)

L (11)

where λ = e−jk∆ describes the amplitude and phase change when the wave propagates from
the left side to the right side of a unit cell. k is the wavenumber and ∆ is the length of a unit
cell. Introduce equation (10) and (11) into (2) and eliminate fL and fR, leads to([

0 σI
−DRL −DRR

]
−
[
σI 0
DLL DLR

])(
qL

qR

)
= 0 (12)

Assembling the displacement and force eigenvectors in the matrix form we obtain the wave
basis

Φ =

[
Φ+

q Φ−
q

Φ+
f Φ−

f

]
(13)

where superscript + and− refer to the data belong to positive and negative going waves respec-
tively. It is not necessary to consider all the N waves, because those strong evanescent waves
nearly have no contribution to the overall response while they cause numerical issues [8, 9].
The m kept waves are those propagating (|λ| = 1) and less decaying (|λ| > τ ), where τ is a
given factor, here is τ = 0.01 is used. Because of the wave selection, the number of waves to
be kept can be different in different frequencies.

3 DYNAMIC STIFFNESS MATRIX OF THE BUILT-UP STRUCTURE

Concerning the analysis of the complete assembled structure, there are 3 major steps, as shown
in figure 4: 1) model the near-field completely by FEM, with no reduction or simplification; 2)
model the far-field waveguide by WFEM and obtained the equivalent reflection matrix; and 3)
model the piezoelectric waveguide and obtain the equivalent mechanical impedance matrix.

Figure 4: Illustration of the modeling process of the proposed method.

After these steps, all the DOFs of the waveguides would be condensed so that the final
dimension of the dynamics stiffness matrix of the built-up structure is equal to the near field

5
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one. The governing equations then write[
HII HIB

HBI HBB + Heq

](
qI

qB

)
=

(
fI

0

)
(14)

where subscripts I and B indicate the internal DOFs of the near-field and the DOFs connected
to the waveguides respectively. Heq is the equivalent mechanical impedance of piezoelectric
waveguide and it is

Heq =
[
Φ+

f + Φ−
f

(−Λ−Lp/∆p ·Req · +ΛLp/∆p
)] [

Φ+
q + Φ−

q

(−Λ−Lp/∆p ·Req · +ΛLp/∆p
)]−1

(15)
where Req is the equivalent reflection matrix of the far-field substructure. Specifically, it is

Req = −
(
Φ−

q −YΦ−
f

)−1 (
Φ+

q −YΦ+
f

)
(16)

and

Y =
[
Θ+

q + Θ−
q

(−N−Lf/∆f ·R · +NLf/∆f
)] [

Θ+
f + Θ−

f

(−N−Lf/∆f ·R · +NLf/∆f
)]−1

(17)

where R is the reflection matrix at the boundary of far-field substructure. For infinite case it
is a zero matrix. +Λ and −Λ are diagonal matrices consisted of wavenumbers associated to
positive-going and negative-going waves in piezoelectric waveguide respectively. +N and −N
have the same meaning but they are for far-field waveguide. Φ and Θ represent the wave basis
for piezoelectric waveguide and far-field waveguide respectively.

4 VALIDATIONS

A finite solid-element meshed structure is considered, shown in figure 5. It is constructed by
bonding 10 groups of co-located piezoelectric patches onto a uniform host structure excited at
the center. 5 groups of piezoelectric patches are periodically distributed at the right side of the
excitation while five other groups are located on the other side. The structure is clamped on the
right top and free at the left end.

Figure 5: The calculation layout of the finites piezoelectric structure

To establish the wave basis of the piezoelectric waveguides, the proposed modal reduc-
tion approach is employed. All the internal mechanical DOFs have been transferred into modal
coordinates and only 10 modal DOFs are retained. While all the electric DOFs remain in the

6
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reduced dynamic stiffness matrix. Figure 6 compares the stiffness matrix of a unit cell before
and after the modal reduction in the form log10(| · |). It can be seen in figure 6a that, before
the reduction, the matrix is sparse and large (722 × 722). While after the reduction it tends to
be dense and with a much smaller size (102 × 102). In the condensation process, 90 boundary
DOFs are retained, which means only a 12×12 matrix of the internal DOFs needs to be inverted
after the reduction, otherwise the inverse of a 632 × 632 matrix of the internal DOFs will be
searched.

(a) Before modal reduction (b) After modal reduction

Figure 6: Illustration of stiffness matrix of a unit cell

The dispersion curves of the piezoelectric waveguides are shown in figure 7a. Overall
6 waves are observed after the identification, in which 4 waves (wave index 0, 1, 4 and 5) are
propagating and 2 waves (wave index 2 and 3) are evanescent. Their wave shapes indicate
that wave 0 and 2 are propagating (figure 7b) and evanescent flexural waves in z direction
respectively , wave 1 and 3 are the propagating and evanescent flexural waves in y direction,
wave 4 is the torsional wave and wave 5 is the longitudinal wave.

(a) The dispersion curves (b) wave shape 0: flexural

Figure 7: Wave modal results of the piezoelectric waveguide

With the reduced wave bases of the piezoelectric and far-field waveguides, the proposed
method can be employed to analyze the forced response of the structure. The validation data
come from the full FE model of the whole assembled structure. Two circuits are considered: 1)

7
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resistor R = 1× 105 Ω; and 2) resistor-inductor R = 10 Ω and L = 2.945 H. The response is
compared between full FE model and the proposed hybrid model, shown in figure 8. The results
of the proposed method are first obtained only on the near-field DOFs. Then the response of
the waveguides are obtained progressively by post-processing. Good agreements can be seen
in both figures. It should be noted that two reduction have been made on different stages. To
obtain the wave basis, a structural-modal reduction was conducted in order to accelerate the
calculation. Additionally, in forced response analysis, a wave-modal reduction was employed
to avoid ill-conditioning. In this validation case, 10 of the overall 632 structural modes are re-
tained in the first reduction and concerning the later reduction only 6 of the overall 45 waves in
the piezoelectric waveguides and 42 waves of the overall 45 waves in far-field waveguides are
kept. The agreement with the full model results indicate that these reductions are accurate and
the proposed method is applicable to solid-element modeling case.

(a) With resistive circuit at 400 Hz (b) With resistor-inductor circuit at 3120 Hz

Figure 8: Validation of the proposed method with full FEM results: displacement of uz DOF of
all the middle line nodes

5 APPLICATION

The proposed numerical tool also enables one to analyze the energy flow and forced response
in open structural system constructed by a near-field and several periodic waveguides. Here an
application is briefly presented. The considered open structural system is obtained by chang-
ing the far-field of the closed structural system used in the validation to infinite. The material
properties, the geometric of near-field and the parameters of a single unit cell of the waveguides
remain the same. Each piezoelectric patch is shunted by an identical resistive circuit, where
resistance R = 1× 104 Ω. The excitation is applied in the center of the near-field, still as same
as it was considered in the validation.

Forced response and energy flow are obtained by the proposed method and presented
in figure 9, where only the data in positive x coordinates are presented due to the symmetry of
the structure. The contribution to the displacement of the evanescent waves can be seen in the
near-field. In the Far-field, propagating waves dominate the response where the phase varies
linearly in space. Through the results of energy flow, the dissipation caused by the piezoelectric
waveguide are clearly illustrated.

To find the desired design of the piezoelectric waveguide, one needs to choose a patten of

8
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the electric circuit and calculate the power flow with different parameters. Sometimes maybe a
optimization process will be connected. Due to the dual condensation condensations considered
in this method, it is suitable for this kind of repetitive calculation.

Figure 9: Forced response and energy flow in the structure

6 CONCLUDING REMARKS

A multi-scale numerical tool for the forced response and energy flow for piezoelectric-based
structures are proposed in this paper. By means of this approach, the designed 1D piezoelectric
waveguides can be evaluated by considering them as components of a built-up structure. The
major modeling strategy is to model the non-periodic near-field by FEM and the waveguides
by an enhanced WFEM, and then adapt the models of the substructures. The correlation with
full FEM results attests that the proposed method is also accurate to simulate mode-dominated
finite structures. With the advantage in the calculation speed, this method is applicable in the
design process where the calculation is required on numerous sets of parameters.
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ABSTRACT 
 

In this paper, a theoretical model based on Hamilton’s principle and spectral analysis is used to 

obtain the geometrically non linear free and steady state forced response of a laminated skew 

plate at large vibration amplitudes. Such a structure is analyzed regarding the influence of 

different parameters: the intensity of the excitation force, the ply properties, the plate aspect ratio 

and skew angle. The solution of the amplitude equation is obtained in each case using the explicit 

analytical approach previously developed.  The results showed, as may be expected due to the 

membrane forces induced by the large vibration amplitudes, a non linearity of the hardening type 

with a shift to the right of the bent frequency response function, in the neighborhood of the 

fundamental mode.  The effects of the various parameters mentioned above have been examined 

and the comparison between the results obtained and those available in previous studies showed 

a good agreement. 
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1 INTRODUCTION 

Field like Aerospatiale, mechanical and civil engineering are commonly used the thin laminated 

composite skew plates on their applications. Generally, such structures are supported a forces, and 

vibrating in high amplitude, inducing a new behavior in the lamina constituted the composite 

material. Analytical methods are interesting to understand the influence of different parameters on 

the response of the structure, and complete the numerical methods as a basic reference tool. A lot 

of studies are concerned by analytical and numerical method. Kadiri and Benamar  [1-3] has 

developed a semi analytical method based on Hamilton's principle and spectral analysis, for 

determination of the geometrically non-linear free and forced response of thin straight structures. 

Two models for non-linear vibration of beam and plate have been proposed. These two models 

were based on the linearization of the nonlinear algebraic equations, written in the modal basis, in 

the neighbourhood of each resonance. The first formulation leads to explicit analytical 

expressions for higher mode contribution coefficients to the ith non linear mode shape of the 

structure considered, as functions of the amplitude of vibration, the mass, rigidity, and non 

linearity tensors. This first model was shown to be applicable to finit amplitude of vibration, up to 

0.8 times the beam thickness, and 0.5 times the plate thickness. The second formulation was 

leaded to similar results for higher amplitudes of vibration, up to 2.3 time the beam thickness, and 

once the plate thickness via solution of reduced linear systems. Das and al analysed [4] the static 

behaviour of thin isotropic skew plates under uniformly distributed load with the geometric 

nonlinearity using a variational method based on total potential energy. Duan and Mahendran [5] 

analysed the large deflection behavior of skew plate with various skew angles, length to width 

ratios, thicknesses and supported edges under uniformly distributed and concentrated loads using 

a new hybrid/mixed shell element. Also, published works devoted to the forced vibration of 

composite plates was found in literature. Han and Petyt [6] investigated the forced vibration of 

symmetrically laminated plates using the hierarchical finit element method (HFEM). Nguyen-Van 

and al [7] presented an improved finite element computational model using a flat four-node 

element with smoothed strains for geometrically nonlinear analysis of composite plate/shell 

structures. The Von-Karman’s large deflection theory and the total Lagrangian approach are 

employed in the formulation of the element to describe small strain geometric nonlinearity with 

large deformations using the first-order shear deformation theory (FSDT). Harras and Benamar 

[8, 9] investigated theoretical and experimental of the non-linear behavior of various fully 

clamped rectangular composite panels at large vibration amplitudes. Ribeiro and Petyt [10] has 

applying the principle of virtual work and the HFEM for studying the steady state, geometrically 

non-linear, forced vibration of isotropic and composite laminated rectangular plates under 

harmonic external excitation. 

This work presents an explicit analytical model for the steady state, geometrically non 

linear, periodic forced vibration of fully clamped thin skew composite plates, under harmonic 

external excitation. The theoretical model developed in [1-3] was adapted here.  Comparison was 

made between the iterative method and the approximate explicit method. The frequency response 

curves have been obtained at the plate centre, for various levels of loading, various skew angles 

and various aspect ratios. It appeared that the method works well, since excellent agreement was 

found between the result of the present model and those published in the literature.  

2 EXPLICIT ANALYTICAL FORMULATION FOR THE GEOMETRICALLY 

NONLINEAR LAMINATED SKEW PLATE EXCITED HARMONICALLY BY 

CONCENTRATED OR DISTRIBUTED FORCES 

251/361



DYNCOMP’2015  2-4 June 2015, Arles (France) 

 

 

3 

 

Consider the skew plate with a skew angle  shown in Figure 1. For the large vibration amplitudes 

formulation developed here, it is assumed that the material of the plate is elastic, isotropic and 

homogeneous. The thickness of the plate is considered to be sufficiently small so as to avoid the 

effects of shear deformation. The skew plate has the following characteristics:  a, b, S: length, 

width and area of the plate; x-y: plate co-ordinates in the length and the width directions; -η, H: 

Skew plate co-ordinates and plate thickness; E, : Young’s modulus and Poisson’s ratio; D, : 

plate bending stiffness and mass per unit volume.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Skew plate in x-y and -η co-ordinate system 

 

For the classical plate laminated theory, the strain-displacement relationship for large 

deflections are given by: 

 

 ε =  ε0 + z  k +  0 . 
 

(1) 

In which   𝜀0 ,  𝑘  and  0  are given by: 

 ε0 =

 
 
 
 
 
 
 

∂U

∂x
∂V

∂y
∂U

∂y
+

∂V

∂x 
 
 
 
 
 
 

;  k =  

kx

ky

kxy

 =

 
 
 
 
 
 
 
−∂2W

∂x2

−∂2W

∂Y2

−2 ∂2W

∂xy  
 
 
 
 
 
 

;  0 =  

x
0

y
0

xy
0

 =

 
 
 
 
 
 
 1

2
 
∂W

∂x
 

2

1

2
 
∂W

∂y
 

2

∂W

∂x
 
∂W

∂y  
 
 
 
 
 
 

. 

 

(2) 

U, V and W are displacements of the plate mid-plane, in the x, y and z directions 

respectively. For the laminated plate having n layers, the stress in the Kth layer can be expressed 

in terms of the laminated middle surface strains and curvatures as: 

 σk =  Q  k ε .  (3) 

In which  𝜎 𝑘
𝑇 =  𝜎𝑥𝜎𝑦𝜎𝑥𝑦    and terms of the matrix  𝑄   can be obtained by the 

relationships given in reference [11]. The in-plane forces and bending moments in a plate are 

given by: 

 

 

 y 

x,  

b 

a 
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A, B and D are the symmetric matrices given by the following Equation 5.  𝐵 = 0 for 

symmetrically laminated plates [12]. 

 Aij , Bij , Dij =  Qij
 k  1, z, z2 

H
2 

−H
2 

dz. 

 

(5) 

Here the 𝑄𝑖𝑗
 𝑘 

 are the reduced stiffness coefficients of the kth layer in the plate co-

ordinates. The transverse displacement function W may be written as in reference [10] in the form 

of a double series: 

W =  Ak 
T W  sinkωt.  (6) 

Where  Ak 
T =  a1

k , a2
k , … , an

k    is the matrix of coefficients corresponding to the kth 

harmonic,  W T =  w1, w2 , … , wn   is the basic spatial functions matrix, k is the number of 

harmonics taken in to account, and the usual summation convention on the repeated index k is 

used. As in reference [13], only the term corresponding to k=1 has been taken into account, which 

has led to the displacement function series reduced, to only one harmonic: i.e., 

W = ai  wi x, y sinωt.  (7) 

Here the usual summation convention for the repeated indexes i is used. i is summed over 

the range 1 to n, with n being the number of basic functions considered. The expression for the 

bending strain energy Vb, axial strain energy Va and kinetic energy T are given in reference 

(Harras 2001) in  the rectangular co-ordinate (x,y). The skew co-ordinates are related to the 

rectangular co-ordinate (,) by: =x-y tan ; =y/cos. So, the strain energy due to bending Vb, 

axial strain energy Va and kinetic energy T are given in the -η co-ordinate system. In the above 

expressions, the assumption of neglecting the in plane displacements U and V in the energy 

expressions has been made as for the fully clamped rectangular isotropic plates analysis 

considered in reference [13]. Discretization of the strain and kinetic energy expressions can be 

carried out leading to: 

Vb =
1

2
sin2 ωt aiajkij  ; Va =

1

2
sin4 ωt aiajakalbijkl  ; T =

1

2
ω2cos2 ωt aiajmij . 

 
(8) 

In which mij, kij and bijkl are the mass tensor, the rigidity tensor and the geometrical non-

linearity tensor respectively. Non-dimensional formulation of the non-linear vibration problem 

has been carried out as follows.  

wi , η = Hwi
∗  


a
,
η

b
 = Hwi

∗ ∗, η∗ . 
 

(9) 

Where ∗and η∗are non-dimensional co-ordinates  ∗ =


a
 and η∗ =

η

b
 one then obtains: 

 
N
M

 =  
 A  B 
B  D

  
 ε0 +  0 

 k 
 . 

 

(4) 
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kij =
aH5E

b3
kij
∗ ;  bijkl =

aH5E

b3
bijkl
∗ ; mij = ρH3abmij

∗ . 
 

(10) 

Where the non-dimensional tensors m*ij, k*ij and b*ijkl are given in terms of integrals of 

the non-dimensional basic function wi*, non-dimensionnal extensional and bending stiffness 

coefficient A
*
ij and D

*
ij , skew angle  and aspect ratio α. 

Upon neglecting energy dissipation, the equation of motion derived from Hamilton’s 

principle is: 

δ (V − T)
2π

0

= 0. 
 

(11) 

Where V=Va+Vb. Insertion of  Equations 8 into Equation 11, and derivation with respect 

to the unknown constants ai, leads to the following set of non-linear algebraic equations: 

2aikir
∗ + 3aiajakbijkr

∗ − 2ω∗aimir
∗ = 0. 

 
(12) 

Where r=1, …, n. These have to be solved numerically. To complete the formulation, the 

procedure developed in [8] is adopted to obtain the first non-linear mode. As no dissipation is 

considered here, a supplementary equation can be obtained by applying the principle of 

conservation of energy, leads to the equation: 

ω∗2 =
aiajkij

∗ + (3/2)aiajakalbijkl
∗

aiajmij
∗ . 

 

(13) 

This expression for ω*
2
 is substituted into Equation 12 to obtain a system of n non-linear 

algebraic equations leading to the contribution coefficients ai, i=1 to n. ω and ω* are the non-

linear frequency and non-dimensional non-linear frequency parameters related by: 

ω2 =
D

b4cos4θ
ω∗2. 

 
(14) 

To obtain the first non-linear mode shape of the skew plate considered, the contribution of 

the first basic function is first fixed and the other basic functions contributions are calculated via 

the numerical solutions of the remaining (n-1) non-linear algebraic equations. 

In this section, a fully clamped laminate skew plate excited by a concentrated harmonic 

force Fc applied at the point (0,0); or by a distributed harmonic uniform force F
d
, distributed 

over the surface  of the plate S are considered.  F
c
 and F

d
 may be written using the Dirac function 

 as: 

Fc ,, t = Fcδ −
0
 δ −

0
 sin ω t.      

 
(15) 

Fd ,, t = Fd sinω t   if  ,  S.       (16) 

Fd ,, t = 0   if  , S.  (17) 
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The corresponding generalized forces Fi
c
(t) and Fi

d
(t) in the beam function basis (BFB) are 

given by: 

Fi
c t = Fcwi x0, y0 sin ω t = fi

c sinω t.       (18) 

Fi
d t = Fd sinω t  wi x, y 


dxdy = fi

d sinω t.      
 

(19) 

The explicit analytical method has been successively applied in references [1-3] to non-

linear free and forced vibrations, occurring at large displacements amplitudes, of rectangular plate. 

The purpose of this paper is to apply the explicit simple formulation to non-linear forced 

vibrations of laminated skew plate, then, make comparison of the new results with those found by 

the iterative method and with the previous ones available in the literature in order to determine 

exactly the limit of validity of this formulation. Analytical details are given in this section for the 

first non-linear mode shape of a forced fully clamped laminated skew plate. As it was noticed that 

the contribution a1 remains significantly higher than a2 to an, denoted in what follows as 2, 3,…, 

18, the main idea of the approach presented in references [1-3] was to simplify the non-linear 

expression aiajakbijkr in Equation 12, which involves summation for the repeated indices i, j , k  

over the range {1,2,…,n}, by neglecting both first and second order terms with respect to i, i.e. 

terms of the type kr11k
2
1 ba   or of the type jkr1kj1 ba   so that the only remaining term is *

r111
3
1 ba . 

The Equation 12 becomes: 

 kir
∗ − ω∗2mir

∗  εi +
3

2
a1

3b111r
∗ = fr

∗, r = 2,3, … ,18.     
 

(20) 

Where 𝑓𝑖
∗𝑐  and  𝑓𝑖

∗𝑑  corresponding, respectively to the dimensionless generalized 

concentrated force F
c
 at point (0,0); and to the uniformly distributed force F

d
 over the surface  

of the plate; The expressions obtained are: 

fi
∗c = Fc b3

aE H4
wi

∗ 
0
∗ ,

0
∗ .   

 
(21) 

fi
∗d = Fd b4

EH4     wi
∗(∗,∗)


d∗d∗.   

 
(22) 

As mentioned in reference [3], the above system permits one to obtain explicitly the basic 

function contributions 2, 3,…, 18 of the second and higher functions, corresponding to a given 

value of the assigned first basic function contribution a1 if *
irk , for ri  , is assumed to be 

negligible compared to *
rrk , and direct solution was as follows:  

εr =
fr
∗ −

3
2

a1
3b111r

∗

krr
∗ − ω∗2mrr

∗
, r = 2,3, … ,18. 

 

(23) 

It was shown in Reference [3] that the accurate explicit analytical solution corresponding 

to the non-linear free and forced vibration cases can be obtained only in the normal modes basis 

of the fully clamped plate considered (MFB). So, the problem of non linear forced laminated 

skew plate will also be formulated in this appropriate basis, using the notation of Reference [3]. 

The simplified theory presented in this subsection focuses on non-linear vibrations of 

plates using a multi-mode approach and taking into account the coupling between the higher 

vibration modes. The solution obtained in Equation (23) makes it possible to get directly the non-

linear frequency response function in the neighbourhood of the first mode. This gives not only the 

displacement at the centre of the plate, as is usually the case, as a function of the non-linear 
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frequency, but also the plate response spatial distribution on its whole area, for each level of 

excitation. The results obtained by this approach, are in good agreement with the experimental 

results in Reference [14]. 

3 RESULTS AND DISCUSSION 

The aim of this section is to apply the theoretical model presented above to analyze the 

geometrical non-linear free and forced dynamic response of skew fully clamped symmetrically 

laminated plates in order to investigate the effect of non-linearity on the non-linear resonance 

frequencies and non-linear fundamental mode shape at large vibration amplitudes. Convergence 

studies are carried out, and the results are compared with those available from the literature 

through a few examples of laminated composite skew thin clamped plates with different fibre 

orientation and aspect ratio. The material properties, used in the present analysis are: Isotropic 

plate and composite laminated plate (graphite/epoxy) has five layers symmetrical angle-ply (45°,-

45°, 45°,-45°, 45°); EL =173 GN/m2; ET= EL/15.4 GLT/ET = 0.79; LT = 0.3.  

Where E, G and  are Young’s modulus, shear modulus and Poisson’s ratio. Subscripts L 

and T represent the longitudinal and transverse directions respectively with respect to the fibres. 

All the layers are of equal thickness. Calculation was made by using 18 functions corresponding 

to three symmetric beam functions in the  direction and three symmetric beam functions in the η 

direction, and three anti-symmetric beam functions in the  direction and three anti-symmetric 

beam functions in the η direction. Table 1 shows the non linear results for a fully clamped 

isotropic square plate subjected to harmonic distributed force f1*
d
=104.45 (F

d
=873.82N/m

2
) 

obtained using a multimode approach. It can be seen a good convergence with results presented in 

reference [3].  

 

Wmax* Reference [3] Present result Error % 

+0.2 0.1475 0.1487 0.81 

-0.2 1.4218 1.4220 0.01 

+0.4 0.7661 0.7671 0.13 

-0.4 1.2596 1.2602 0.05 

+0.6 0.9285 0.9304 0.20 

-0.6 1.2364 1.2377 0.11 

+0.8 1.0476 1.0507 0.30 

-0.8 1.2639 1.2665 0.21 

+1 1.1588 1.1632 0.38 

-1 1.3202 1.3240 0.29 

 

Table 1. Forced vibration frequency ratio /l for a fully clamped square plate subject to 

harmonic distributed force f1*
d
=104.45 (F

d
=873.82N/m

2
). 

 

The variation of non-dimensional nonlinear frequency ratio nl/l with respect to non dimensional 

maximum amplitude wmax/h is evaluated for different skew angle subjected to uniform harmonic 

load is shown in figure 2. The nonlinearity is reduced with increasing skew angle. It can be 

noticed multivalued regions corresponding to the jump phenomena occurring in non-linear 

vibration. 
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Figure 2. Comparison of the Forced response of a fully clamped isotropic square plate subjected 

to harmonic distributed force f1*
d
=104.45 (F

d
=873.82N/m

2
) for different skew angle. 

 

A comparison between results obtained by the explicit model with those obtained using 

the single mode approach for fully clamped laminated composite plate excited by a harmonic 

distributed forces  f1*
d
=10 (F

d
=124.7N/m

2
) was presented in Figure 3. It can be seen a reasonable 

estimate for the amplitude at the centre of the plate. 

 

 

 

 
Figure 3.  Comparison of the forced response of a fully clamped composite square plate subjected 

to harmonic distributed force f1*
d
=10 (F

d
=124.7N/m

2
) obtained with explicit method with 

reference [8]. 

 

In the case of fully clamped composite skew plate subjected to harmonic distributed force 

f1*
d
=10 (F

d
=124.7N/m

2
) with aspect ratio equal to 1, the effect of increasing skew plate on the 

nonlinearity was clearly exhibited in figure 4.  The nonlinearity decreases with increases skew 

angle. For skew angle =45° it decreases about 10% compared with the rectangular case. 

 

 

 

 

Reference [8] 

Present result 

W
*
max 

*/*l 

W
*
max 

*/*l 

=0° 

=30° 

=45° 
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Figure 4. Comparison of the Forced response of a fully clamped composite plate subjected to 

harmonic distributed force f1*
d
=10 (F

d
=124.7N/m

2
) for different skew angle and =1. 

 

The figure 5 shows the effect of the aspect ratio on the fully clamped composite skew 

plate. It can be seen that the increasing of aspect ratio; reduced the non-linearity of the plate. 

 

 

 
Figure 5. Comparison of the forced response of a fully clamped composite skew plate subjected to 

harmonic distributed force f1*
d
=10 (F

d
=124.7N/m

2
) for different aspect ratio  and =30°. 

4 CONCLUSION 

A model using a semi analytical approach based on lagrange’s equations, and the harmonic 

balance method are successively applied for geometrical non-linear, steady state, periodic forced 

vibration of composite laminated skew plates. Good results were found using a single and 

multimode approach to determine the amplitude frequency dependence in the centre of the plate 

by varying skew angle and aspect ratio. It can be seen that the skew angle reduce the effect of the 

nonlinearity, also the increasing aspect ratio decrease the nonlinearity. Good agreement between 

the present results and those found in literature has been achieved. 
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ABSTRACT

In this paper, a numerical method is employed to determine high-order waves dispersion char-
acteristics in a sandwich waveguide. Then, wave reflection is examined through a coupling
element involving an elastic layer deposited on the waveguide’s surface. The influence of struc-
tural loss factor on the reflection coefficients of propagating waves is evaluated. Then, high-
order waves reflections are compared for several layer’s thicknesses and distributions, in order
to determine whether further informations can be gathered on a given structural alteration by
using high-order waves.
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1 INTRODUCTION

In the context of structural health monitoring (SHM) of composite structures, an increasing re-
search effort was developed in recent years. The motivation is, among others, the development
of non-destructive inspection techniques providing maximum information on the structural state
of a structure, as well as the possible defects localization and sizing. For this purpose, systems
based on guided waves revealed very promising and are currently used for numerous applica-
tions.

Yet, designing wave-based SHM systems requires effective tools for analysing and pre-
dicting the various types of elastic waves propagating in the considered structure. These waves
can propagate with different group velocities, wavenumbers and spatial attenuations, and re-
quire specific actuation and measurement systems. For example, Lamb waves, originally de-
fined for thin isotropic plates with stress-free surfaces, are now extensively used in SHM for
anisotropic, multi-layered or other composite structures. Accordingly, waveguides involving
complex or heterogeneous cross-sections can produce numerous wave types, whose dispersion
characteristics prediction may require advanced numerical simulation. For such applications,
the Wave Finite Element Method (WFEM) uses Bloch’s theorem [1] to significantly reduce of
the modelling effort. It combines Periodic Structures Theory (PST) with commercial finite el-
ement (FEM) packages. The wave dispersion characteristics can be determined by solving a
quadratic eigenvalue problem obtained with a finite element model of the waveguide’s cross-
section [2].

In order to describe the wave transmission, reflection and coupling effects occurring
when the aforementioned waves propagate through a defect, join or other type of coupling ele-
ment, the Diffusion Matrix Model (DMM) was developed to connect two waveguides with an
elastic coupling element [3]. This method was extensively employed for defining reflection co-
efficients in order to localize and evaluate cracks in pipelines [4]. The DMM is used to identify,
among the different propagating wave types [5], the waves which exhibit the highest sensitiv-
ity towards structural perturbation, such as reduced mass or stiffness induced by imperfection,
defect or erosion.

This work is concerned with the diffusion of high-order waves through a coupling el-
ement involving added mass and stiffness, bonded on the surface of a sandwich plate. In this
example, the structural perturbation is made of an elastic layer modelled using FEM. The propa-
gation of high-order plane waves in the sandwich plate made of transverse isotropic honeycomb
core surrounded by fiber-reinforced skins is investigated. High-order waves are discriminated
according to their dispersion characteristics and wave shapes. Finally, their sensitivity to local-
ized structural perturbations is discussed.

2 WAVE PROPAGATION AND DIFFUSION THROUGH A COUPLING ELEMENT

2.1 Wave finite element method

A waveguide is considered as a straight elastic structure made of N of identical substructures
of same length d, connected along the direction x. The state vector is described in figure 1.
Nodal displacements and forces are denoted q and f, where the subscripts ’L’ and ’R’ describe
the cell’s left and right faces. Both edges have the same number n of degrees of freedom. Mesh
compatibility is assumed between the cells. The governing equation in a cell at frequency ω is
written :

(−ω2M + K)q = f (1)

2
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Figure 1. Illustration of a waveguide and the state vector of a unit cell.

where M,K are the mass and complex stiffness matrices, respectively. A dynamic condensation
of the inner DOFs can be required if the structure is periodic. The governing equation can be
written by reordering the DOFs :[

KLL KLR

KRL KRR

]
− ω2

[
MLL MLR

MRL MRR

]{
qL

qR

}
=

{
fL
fR

}
(2)

where Mii and Kii are symmetric, Mt
LR = MRL and Kt

LR = KRL. λ = e−jkd is the prop-
agation constant, describing wave propagation over the cell length d and k is the associated
wavenumber, considering force equilibrium λfL + fR = 0 in a cell and Bloch’s theorem,
qR = λqL into Eq. (2), it yields the following spectral eigenproblem :

S(λ, ω) = (λDLR + (DLL + DRR) +
1

λ
DRL+)Φ = 0 (3)

where the solutions Φ stand for the wave shape associated with the displacements qL of the
waveguide’s cell. In damped waveguides, complex wavenumbers are associated to decaying
waves. Defining the state vector : Φ = [(Φq)

t, (Φf )t]t, the spectral problem can be written
using the symplectic transfer matrix T.

TΦ =

[
D−1

LRDLL D−1
LR

DRL −DRRD−1
LRDLL −DRRD−1

LR

]{
Φq

Φf

}
= λ

{
Φq

Φf

}
(4)

Here, the waves associated with positive wavenumber are travelling in the positive x-direction
and the negative wavenumbers describe propagation in the negative x-direction. Therefore the
wave solutions can be ordered as follows :

Φ =

[
Φinc

q Φref
q

Φinc
F Φref

F

]
, (5)

where inc refers to the incident waves and ref denotes the reflected waves and Φinc
q , Φref

q ,
Φinc

F , Φref
F are n × n matrices. The displacements u(k)L and u(k)R of any substructure k can be

written using the wave solutions {Φi}i=1,...,2n :

u
(k)
L = ΦQ(k) , u

(k)
R = ΦQ(k+1) (6)

3
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where the vector Q stands for the wave amplitudes, and is written :

Q =

(
Qinc

Qref

)
. (7)

2.2 Wave diffusion through a coupling element

Consider the two waveguides connected with an elastic coupling element in figure 2. The
substructures are connected, assuming compatible mesh at the interfaces Γ1 and Γ2 and no
external forces are applied on the coupling element.

Substructure 1 Substructure 2

S1

x1 uR
(1)

uL
(2)

x2

Waveguide 1 Waveguide 2Coupling element

S2

Γ1 Γ2

Figure 2. Illustration of two coupled waveguides.

This part is concerned with the determination of transmitted and reflected waves am-
plitudes through the coupling element. Denoting D∗

c the condensed dynamical stiffness of the
coupling element, the governing equation can be written :

D∗
c

(
qc
1

qc
2

)
=

(
Fc

1

Fc
2

)
, (8)

Considering the relations between the displacements (q
(1)
R ,q

(2)
L ) and the forces (F

(1)
R ,F

(2)
L ) ap-

plied on the surfaces Γ1 and Γ2 :(
F

(1)
R

F
(2)
L

)
= −

(
Fc

1

Fc
2

)
,

(
qc
1

qc
2

)
=

(
q
(1)
R

q
(2)
L

)
, (9)

the coupling relation between the two waveguides can be written :

Dc∗

(
q
(1)
R

q
(2)
L

)
=

(
F

(1)
R

F
(2)
L

)
. (10)

In this context, the dynamical behaviour of the coupled waveguide can be described using the
incident ((Φinc(i)

q )T(Φ
inc(i)
F )T)T and reflected ((Φref(i)

q )T(Φ
ref(i)
F )T)T waves. Therefore, in can be

shown in reference [3] that the incident and reflected wave amplitudes (Qinc(1),Qinc(2)) can be
related through a diffusion matrix C :(

Qref(1)

Qref(2)

)
= C

(
Qinc(1)

Qinc(2)

)
, (11)

4
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where
C = −

[
Dc∗ Ψref

q + Ψref
F

]−1 [Dc∗ Ψinc
q + Ψinc

F

]
(12)

and the matrices Ψinc
q , Ψref

q , Ψinc
F and Ψref

F are expressed in terms of incident and reflected
wave solutions described in Eq.(5) :

Ψinc
q =

[
Φinc(1)

q 0

0 Φinc(2)
q

]
, Ψref

q =

[
Φref(1)

q 0

0 Φref(2)
q

]
(13)

Ψinc
F =

[
Φ

inc(1)
F 0

0 Φ
inc(2)
F

]
, Ψref

F =

[
Φ

ref(1)
F 0

0 Φ
ref(2)
F

]
.

In the following section, the diffusion matrix C is determined to provide the transmission t

and reflection r coefficients of high-order waves in a sandwich waveguide exhibiting a layer of
epoxy deposit.

3 WAVE DISPERSION IN THE SANDWICH WAVEGUIDE

The rectangular sandwich waveguide is composed of a 8 mm thick homogenised honeycomb
core surrounded by 1 mm thick fiber-reinforced skins. The 400 mm width cross-section is mod-
elled using 360 linear block elements having 8-nodes and 3 degrees of freedom (DOF) per node.
A detailed description of the materials is given in tables 1, 2 and 3.

Material Density (kg.m−1) Young Modulus (Pa) Shear Modulus (Pa)
Ex = 5× 106 Gxy = 1× 106

Nomex 24 Ey = 5× 106 Gxz = 10.13× 106

Ez = 46.6× 106 Gyz = 10.13× 106

Table 1. Material properties of honeycomb core

Material Density (kg.m−1) Young Modulus (Pa) Shear Modulus (Pa)
Ex = 81× 109 Gxy = 2.5× 109

TC skin 1451 Ey = 81× 109 Gxz = 2.8× 109

Ez = 3.35× 109 Gyz = 2.8× 109

Table 2. Material properties of fiber-reinforced skins

Material Density (kg.m−1) Young Modulus (Pa) Shear Modulus (Pa)
Aggregate 2000 E = 20× 109 G = 7.7× 109

Table 3. Material properties of the deposit layer

The wave dispersion characteristics of the sandwich structure are given in figure 3. Con-
tinuous lines describe first-order waves while dashed lines represent high-order propagating
waves, associated with deformed cross-sections. In the considered waveguide, high-order waves
appearing in the frequency range [0, 5000] are propagating waves with sinusoidal deformation
of their cross-section. These waves are referred as high-order flexural waves since their share
the same asymptotic group velocity of the first-order flexural and torsional waves.

5
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Figure 3: Wavenumbers and group velocities of propagating, positive-going waves along the
main direction y.

4 REFLECTION OF PROPAGATING WAVES ON THE COUPLING ELEMENT

In this section, the wave reflection coefficients are examined for the aforementioned waveguide
assuming different types of coupling element. A representation of the coupled structure is
shown in figure 4.

Incident wave

Figure 4: Description of the sandwich waveguide with coupling element involving a deposit
layer of finite dimensions.

6
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The influence of the structural loss factor µ in the waveguide is described in figure 5 for
the propagating waves. Although minor differences can be noticed in the higher frequencies, the
difference between undamped, moderately damped (µ = 0.05) and highly dissipative waveg-
uides is not significant on the frequency range [0, 5000]. Noteworthy, the high-order waves
exhibit a low reflection coefficient close to their cut-on frequency, slightly exceed the first-order
waves after 3000 Hz.
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Figure 5: Comparison of different structural loss factors on the reflection coefficients of propa-
gating waves.

This work being concerned with the sensitivity of high-order waves to different types
of bonded deposits, the wave reflection is studied for two layers involving the same mass of
aggregate, with different shapes. The thick layer (figure 6.a) has a thickness hc = 5 mm and a
length lc = 1 mm while the long layer (figure 6.b) is defined by hc = 1 mm and a length lc =
5 mm.

Figure 6: Coupling elements involving the same amount of deposit distributed : (a) in thickness.
(b) : in length.

7
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The wave reflections for the two layers are split between first-order and high-order prop-
agating waves. In figure 7.a, the first-order waves exhibit close reflection coefficients, meaning
that both coupling elements are expected to produce similar waves reflection. In figure 7.b, the
reflections of the 2nd(�), 3rd(×), 6th(O) and 8th(−) wave orders are compared for both long
and thick layers. Noteworthy, the difference on the reflections is small for the 2nd order wave
and increases after the 3rd order. The difference increases with the wave orders and becomes
important for the 6th and 8th orders. Thus, the two layer’s profiles can be discriminated using
higher orders of flexural waves in the considered waveguide.
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Figure 7: Influence of the deposit layer’s shape on the low-order (a) and high-order (b) waves
reflection coefficients.

5 DISCUSSIONS

The sandwich waveguide considered in this work exhibits numerous high-order waves associ-
ated with sinusoidal mode shapes of the cross section. Although these waves are associated
with slightly higher spatial attenuations, they propagate through heterogeneous or composite
waveguides with similar dispersion characteristics than first-order waves. The effect of the
waveguide’s structural loss factor on wave reflection coefficients was examined, since the de-
termination of this parameter is often a concern when considering heterogeneous or composite
waveguides. Important changes on the loss factor produced weak variations of the wave reflec-
tions. Still, loss factor rules the waves spatial attenuations, hence is a critical information for
large-scaled waveguides.

8
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Then, the sensitivity of high-order waves to the deposit surface distribution was exhib-
ited, while such differentiation could not be provided by the reflection coefficients of first-order
waves. Indeed, the deposit layer’s thickness produced a reflection gap, associated with phase
shift of the complex reflection coefficients. Therefore, it is hoped that such waves can usefully
be employed for further characterization of localized defects in heterogeneous, structurally ad-
vanced or composite waveguides.
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ABSTRACT 
 

This paper discusses the measurement of the vibroacoustic indicators of two sandwich-composite 
structures over a large frequency band. Several indicators are investigated including the 
structural wavenumber, modal density, damping loss factor, radiation efficiency, and sound 
transmission loss. For the first four indicators several direct and indirect measurements 
techniques are presented and compared.  Moreover, the measured indicators are compared to 
analytical predictions. Results show that all measured indicators are in good agreement with 
theory for the studied constructions. 
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1 INTRODUCTION 

Composite sandwich panels are used in several applications due to their favorable stiffness to 
weight ratios. Such panels are composed of thin composite face sheets and a shearing core. 
Unfortunately, these panels do not provide suitable sound insulation or good vibration damping 
characteristics. Indeed, they may depict a wide area of acoustic coincidence, starting at low 
frequencies, leading to increased radiation efficiency, which can lead in some instances to higher 
interior noise levels [1]. Hence, noise reduction and vibration suppression in sandwich panels 
pose major challenges for future aircraft design. Large numbers of references have been devoted 
to the prediction of the vibroacoustic behavior of such panels. A description and comparison of 
various analytical methods can be found in Refs. [2-3]. In comparison, there are few published 
studies on the experimental validation of these models [4]. The objective of this paper is to present 
the measurement of the various vibroacoustic indicators of two sandwich-composite structures 
over a large frequency band. The investigated indicators include the structural wavenumber, 
modal density, damping loss factor, radiation efficiency, and sound transmission loss. For the first 
four indicators several direct and indirect measurements techniques are presented and compared. 
Moreover, the measured indicators are also compared to an analytical general laminate model 
(GLM) [3] and to an equivalent orthotropic panel [4] predictions. 

2 DESCRIPTION OF THE MEASUREMENTS 

This section describes the measurement of the structural and acoustical properties of the studied 
panels. They consist of the wavenumber, modal density, damping loss factor, radiation efficiency 
and the TL. The analysis is performed in a large frequency band starting from 100 Hz to 10 kHz. 
A comparison between the measured parameters and the presented models are given in Section 3. 
A thick and a thin flat sandwich-composite panel with a Honeycomb (HC) core construction are 
studied (Figure 1). They are representative of an aircraft skin and trim panel, respectively. Both 
panels have a surface area equal to 1.5 m2  x yL 1.5m,L 1m  . The thicknesses of the thick and the 

thin flat panels are 26.4 mm and 6.8 mm, respectively.  
 

 

Figure 1.  A thin and a thick flat sandwich composite panels. 

2.1 Wavenumber measurements 

Experimental tests are performed in order to determine the bending wavenumber of the composite 
plates using both the phase difference [5] and correlation [6] techniques. The phase difference 
method is based on the measurement of the phase difference between accelerometers located at 

two positions 1r  and 2r  as shown in Figure 2.a.  
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           (a)                                                        (b) 

Figure 2.  Measurement setup of: (a) the phase difference technique, (b) the Fourier 
Transform technique. 

The bending wavenumber bk  is given by [5]: 

                                                    
   2 11, 2 . bAcc Acc k r r                                                               (1) 

This method assumes the panel flat and of infinite extent and thus doesn't take into account the 
reflections on the edges of the test panel. The flexural wavenumber was also measured using the 
correlation technique [5]. This approach is based on the calculation of the two-dimensional space 
Fourier transform of the surface normal velocity field. For this, the panels were freely hung in a 
quiet room (semi-anechoic) using flexible chords (Figure 1). A shaker was attached at the centre 
of the panel through a stringer and was driven by a broadband white noise signal. A scanning 
laser vibrometer was used to measure the velocity over a surface mesh. The used scan area was 
1m by 0.75 m and consisted of 80 points along the X direction and 80 along the Y direction for a 
total of 6400 measurement points. A schematic is given in Figure 2.b. Measuring the plate normal 
velocity field,  , ,p qw x y  , at each point of the scanning area and using the transition to the 

wavenumber space leads to the flexural wavenumber [6]: 

                               2
1 1

, , ,ˆ ., x p y q

N N
jk x jk yx y

x y p q
p q

W k k w x y e e
N

L L
   

 

                             (2) 

The technique is restricted by the size of the physical scan area, requires equally spaced 
measurement and is very sensitive to noise in the data. It is still used here to corroborate the 
results of the classical phase difference method. 

2.2 Damping loss factor 

The damping loss factor (DLF) of the panels is experimentally derived from the half-power 
bandwidth method (3dB method), the decay rate method (DRM) and the steady state power input 
method (PIM). The first technique refers to modal damping which is valid only at low frequency; 
when possible it is used in the current work as a validation for the other two methods. In the other 
two methods, the primary property of interest is the band-averaged loss factor. The DRM is based 
on the logarithmic decrement of the transient structural response, which is obtained from 
measurement of the decay of accelerometers placed on the structure’s surface after the excitation 
is cut off. Here damping is assumed to follows an exponential decay and all modes in a third-
octave band have the same damping. Hence, the damping loss factor is given, for a third-octave 
band of centre frequency f and slope of the decay DR in units of decibel/second, by the following 
expression [7]: 
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                                                               .
27.3i

DR

f
                                                                      (3) 

The third method (PIM) is directly derived from Statistical Energy Analysis (SEA) power balance 
equation. The damping loss factor is obtained from the measurement of the power supplied to the 
structure and the spatially averaged square velocity produced. In steady state conditions, the 
average power input is equal to the average power dissipated and then the average loss factor is 
[8]: 

                                                                  .i
i

i

P

E



                                                        (4)                                       

2.3 Modal Density 

The modal density of the panels is measured with the panel freely suspended inside an anechoic 
room to minimize radiation coupling between the panel and the room. It is obtained from the 
measurement of the spatially averaged input mobility following [9]: 

                                                               4 ,pn f MRe Y                                                          (5)                             

where M is the mass of the panel and  pRe Y is the real part of the panel’s input mobility

 p Fv FFY G G . FvG 	is the cross-spectrum between the force and the velocity signals at the 

excitation location and FFG  is the autospectrum of the force signal. Mass corrections must be 

considered when making shaker-based frequency response measurement on a lightweight 
structure because of the added mass coming from the impedance head [10]. In consequence, a 
corrected admittance cY  was rather used in Eq.(6). It is obtained using the admittance of the 

impedance head	 ெܻ	, which is measured by exciting the impedance head without the driven plate: 

                                                           1  p
c p

M

Y
Y Y

Y
                                                                   (6) 

The modal densities of the panels were obtained by averaging the modal densities measured at the 
same four locations used for the measurement of the damping loss factor. The modal densities 
were also estimated from the measured wavenumbers using [4]: 

                                               
 2

,
,  ,

2 ,
p s

g

A k
n

c

 
 

  
                                         (7) 

where  ,n    is the angular distribution of the modal density and  , /gc d dk   is the 

group velocity. The results of both measurement methods will be compared to predictions in 
section 3. 

2.4  Radiation efficiency 

There are several methods to measure the radiation efficiency of the panels. In this work, an 
indirect method based on an experimental SEA model of the panel freely hanged in a reverberant 
room was used. It is obtained by studying energy flow relations between the structure and the 
reverberation room. The method is based on solving a two subsystems SEA equation where the 
tested panel is defined as subsystem 1 and the reverberant room as subsystem 2, respectively: 

272/361



DYNCOMP’2015  2-4 June 2015, Arles (France) 
 

 

5 

 

                        
1 12 21 1 1

12 2 21 2 2

          
 ,

                 

E P

E P

  


  
      

          
                                                     (8) 

where ij  is the coupling loss factor (CLF) between subsystems i  and j  (with j i ) and i  is the 

damping loss factor of subsystem i . 

The radiation efficiency   is related to the CLF between the tested panel and the reverberant 
room. Assuming both faces of the panel to radiate equally, 12 2  rad  is thus twice the radiation 

coupling and in consequence [6]: 

                                                          12
0 0

1

2
.

p

M

c A

 


                                                                   (9) 

In the presented results, the CLF 12 is obtained from the inversion of the SEA matrix:  

                                                     

1

11 21 11 12

12 22 21 22

,
A A

A A

 


 

   
      

                                                   (10) 

where coefficients ijA  denote the ratio of the energy (response) of subsystem i  to the input power 

to (excitation of) subsystem j  and 11 1 2122 212;           . The radiation efficiency of the 

panel when freely hanged in a semi-anechoic room was also measured for cross validation 

purposes. It is derived from the measurement of the spatially averaged squared velocity 2v  and 

the radiated sound power. The radiation efficiency is defined as the proportionality between 

radiated sound power rP ad  and the spatially averaged squared velocity 2v  over radiation surface

pA : 

                                                          r
2

0 0

P
.ad

pc A v



                                                                

(11)  

2.5 Transmission loss 

The TL tests were performed in a semi-anechoic–reverberant transmission loss suite. The 
measurement follows ISO 15186-1:2000 standard [11]. The panels are clamped in a frame 
between a reverberant and a semi-anechoic room. White noise was generated in the reverberant 
room using six loudspeakers and the average sound power is captured using a rotating 
microphone. On the semi-anechoic side, the sound intensity is measured using an intensity probe 
with a 6 mm spacer between two 1/4-in microphones. The transmission loss of the structure is 
given by [4]: 

                                                             6.P iTL L L                                                                      (12)     

PL  is the average SPL in the source room. iL  is the averaged intensity level over the 

measurement surface in the receiving room. 
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3 RESULTS AND DISCUSSION 

Comparison between the prediction and experiments are presented and discussed in this section. 
Damping loss factor, wavenumber, modal densities, and the radiation efficiency are measured for 
thin and thick composite panels and compared to analytical (general laminate model, equivalent 
orthotropic panel) predictions. 

3.1 Wavenumber 

Wavenumber results of the thick and thin composite sandwich panels are shown in Figure 3, 
respectively. For each panel, the wavenumber curves measured along X and Y directions using 
the phase difference and correlation techniques are compared. Note that in Figure 3, the acoustic 
wavenumber (straight line) is also presented to show the acoustic coincidence zone of the panels. 

 

                                      (a)                                                                          (b)          

Figure 3. Measured vs. predicted wavenumbers of: (a) the thick panel, (b) the thin 
sandwich panel. 

Overall, the comparisons between the experimental and analytical results are good for both 
methods. At high frequency, the correlation technique gives a better estimation due to fine mesh 
used in the scan. However, the method seems less accurate at low frequencies, especially for the 
thick panel where an overestimation is observed. 

3.2 Damping loss factor 

Damping loss factor results using the half-power bandwidth method (-3dB), the decay rate 
method and the power input method are shown in Figure 4. The half-power bandwidth method (-
3dB) results are used only as a validation tool when applicable.  
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                              (a)                                                                       (b)          

Figure 4. Measured damping loss factor of: (a) the thick panel, (b) the thin sandwich 
panel. 

For both panels, it is observed that the DRM and the PIM agree well at mid frequencies. 
However, at low frequency [100–300 Hz], the damping loss factor is better predicted by the DRM 
compared to the PIM, the reason being the low mode count of the two panels. At high frequency, 
damping loss factor is also well predicted by the DRM. Meanwhile, the PIM fails (Gray area in 
Figure 4). The cause was related to an experimental limitation in injecting power into the system 
in this frequency region. In consequence, in the prediction of the transmission loss, the DRM 
results will be used.  

3.3 Modal Density 

Figure 5 shows comparisons of the modal density predicted by the GLM model to measurements 
(using Eq. (5) for the Input Mobility method and Eq. (7) for the Wavenumber method) for the 
thick and thin composite sandwich panels, respectively.  

 

                             (a)                                                                               (b)          

Figure 5. Measured vs. predicted modal densities of: (a) the thick panel, (b) the thin 
sandwich panel. 

At low and mid frequency, the predicted modal density compares well with measurements using 
the Input Mobility method for both panels. At higher frequencies, the measurement fails, a 
consequence again of the difficulty in injecting the power to the panels with the used shaker. On 
the other hand, good comparison is obtained for both panels at these high frequencies using the 
wavenumber method. This is logical because a fine scan is used. However, a difference between 
the measurement and theoretical values are observed at low frequencies, especially for the thick 
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panel where an overestimation is observed. The cause was related to the previously mentioned 
limitation in measuring the wavenumber. In consequence, better results are obtained using a 
Hybrid method which combine the Input Mobility method at low frequency and the Wavenumber 
method at mid and high frequency (black dotted line in the Figure 5). The Hybrid method results 
agree well with theory over a large frequency band [200Hz to 10 kHz].  

3.4  Radiation efficiency 

Fig. 6 shows the comparisons between predictions using the GLM model and measurements for 
the thick and thin panels, respectively. As discussed before, measurement using both the classical 
method [Eq.(11)] and experimental SEA [Eq.(9)] were performed and are compared in the two 
figures. 

 

                              (a)                                                                             (b)          

Figure 6. Measured vs. predicted radiation efficiency of: (a) the thick panel, (b) the thin 
sandwich panel. 

Overall, it is observed that the comparison is fair for both panels between prediction and 
measurements using the SEA based measurement method. However, the SEA based methodology 
is limited at low frequencies due to the low mode count. On the other hand, and for both panels, 
the classical measurement method diverges at high frequencies. The cause was related again to an 
experimental limitation in injecting power to the system in this frequency region. 

3.5 Transmission loss 

The comparison between tests and predictions is shown in Figure 7. Two prediction methods are 
shown. In the first, the surface impedance of the panel calculated using the GLM model is used to 
estimate the TL. In the second, an equivalent orthotropic panel model is used. For both cases, to 
account for the damping added by the installation of the panels in the test window, the damping 
loss factor measured using the decay rate method with the panels mounted in the window was 
used in the predictions. 
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                         (a)                                                                               (b)          

Figure 7. Measured vs. predicted transmission loss of: (a) the thick panel, (b) the thin 
sandwich panel. 

Figure 7.a shows that the TL prediction of the thick sandwich panel using the equivalent 
orthotropic panel correlates well with the test results. Predictions using both the measured and 
predicted wavenumbers leads to the same results. However, the use of the full GLM model 
underestimates the TL, by approximately 2 dB, starting at the onset of the coincidence region 
(around 500 Hz). For the thin sandwich panel (Figure 7.b), both models are in good agreement 
with measurements in the mass-law region. Sandwich model predict well the critical frequency 
region (around 4000 Hz), while the equivalent panel model overestimates this region. At much 
high frequencies, the sandwich model tends to underestimate the TL. For this panel, all the above 
discussed discrepancies are traced to the uncertainties in the measurement of the panel’s damping 
loss factor.  

4 CONCLUSION 

This paper discusses the measurement of the vibroacoustics indicators of two sandwich-composite 
structures over a large frequency band. Various experimental methods were used and compared to 
analytical predictions. It is shown that the GLM model predict very well the wavenumber 
(dispersion curves), the modal density and the radiation efficiency of the two tested panels. The 
prediction of the TL while acceptable was however found less satisfactory for the thick panel. The 
paper also shows that a simple equivalent orthotropic panel model predict with accuracy the 
transmission loss of the two studied sandwich panels.  
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ABSTRACT

Composite materials have been increasingly used in airframe and space applications because
of their advantageous mechanical properties. Nevertheless, during the structure’s life, damage
induced by low velocity impact, such as matrix cracks, fiber breakage and delamination can
drastically decrease the residual mechanical characteristics of the structure. There is a strong
current trend towards a greater use of high-performance thermoplastics in composites struc-
tures for damage tolerance reasons. In this study, unidirectionnal carbon/PEEK laminate has
been subjected to impact and the damage has been studied using C-scan investigations. The
experimental results show higher delaminated area than expected. The damage morphology
presents high delaminated interfaces situated at mid-thickness of the plate. These delamina-
tions have also the characteristic to be asymmetric whereas the bounday conditions are sym-
metric. Afterwards, this paper shows that a “discrete ply model” is able to simulate the complex
three-dimensional damage patterns in composite laminates with PEEK resin subjected to low
velocity impact. Nevertheless, it is necessary to use low rate on the mode II interlaminar frac-
ture toughness to recover the experimental results. The objective is together to simulate the
impact damage and to better understand the unclassical damage morphology observed during
impact with thermoplastic material.
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1 INTRODUCTION

Nowadays the use of composite materials is fastly growing in potential applications in aerospace
and automotive industries. Nevertheless, impact damage in composite structures may lead to
significant reduction in structure compressive strength and this damage may remain unnoticed
below the Barely Visible Impact Damage threshold. Damage in composite materials and struc-
tures involves multiple failure modes such as fibre breakage, fibre pullout, delamination between
plies, matrix cracking, fibre-matrix debonding, etc.

Many computational methods and experimental characterization techniques are devel-
oped in the impact prediction of composite materials to measure the impact resistance and
thereby to explain the failure criteria. Impact damage behaviors are very difficult to predict
because they depend on many parameters. IM7/PEEK is a carbone fibre reinforced thermoplas-
tic composite unidirectional laminate. It presents inherently nonlinear material properties with
greater residual strength after impact, higher toughness, better delamination resistance and can
absorb a greater quantity of energy in an impact and crash than using carbone fibre reinforced
thermosetting composite.

In the current paper, a 3D damage and failure model of composite laminates subjected
to low-velocity impact damage is described. The modelling of impact damage and its validation
for IM7/PEEK laminate composite plate are presented.

2 IMPACT DAMAGE MODEL

To capture the effects of progressive damage and failure on laminated composite structures,
failure modes in both the fibre and matrix resin must be considered. The model presented
here considers fibre failure in tension and compression, matrix cracking taking into account
permanent indentation and delamination. It is based on the use of cohesive zone models to
capture delamination between plies of different orientation and transverse matrix cracking in
cross-ply. The model is developed and implemented into Explicit/Dynamic Abaqus code with
a VUMAT subroutine. The damage and failure model of composite laminates subjected to
low-velocity impact is now presented.

A damage criterion for the fibre failure is derived from the energy balance based on
crack band theory to dissipate a constant energy release rate per unit area in the 3D continuum
element [1]. This energy-based criterion defines a stiffness degradation model that is introduced
both in tension and compression. The linear relationships between stresses and strains in the
volumic element represents the evolution of the damage in the fibre [2].

The fibre compressive failure behavior is more complicated than in tension. Crack initi-
ation in compression is due to kink band followed by the crushing of fibres packages. Therefore,
a compressive mean crushing stress is applied as a plateau to complete the law. Moreover, dur-
ing the plateau, plasticity is also taken into account to prevent compressive strain from returning
to zero to unloaded state [3].

Matrix cracking refers to the onset of damage at a material point which is based on
Hashin’s theory. The Hashin criteria is calculated in the neighboring volume elements of the
zero-thickness cohesive element. This criterion is assessed at each time increment: the interface
stiffness between two volume elements becomes zero if the criterion is reached and otherwise,
it remains intact.

Permanent indentation is an important prognostic indicator of occurred impact. It re-
flects a non-closure of crack which is the result of the formation of debris inside matrix cracking.
In this model, a pseudo-plasticity law has been used in order to predict the permanent indenta-
tion. It is experimentally observed that the permanent indendation remains approximately 30%
of maximum crack opening in both transversal and out-of-plane directions [4].
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A failure mode which is widely observed in laminate composites is delamination be-
tween adjacent layers or plies of different orientation. This mode is commonly modeled with a
cohesive interface elements based on fracture mechanics. Zero-thickness 3D cohesive elements
are used to joint lower and upper ply volume elements. A failure criterion of interface element
under mixed mode condition is introduced in the model. An exponential softening law is cho-
sen to avoid the shock of the final fracture by introducing a complex state variable to track the
extent of damage accumulated at the interface.

3 EXPERIMENT AND SIMULATION

In order to validate the impact damage model described above, an experimental low-velocity
impact test was carried out. Postmortem evaluation of the damage delamination is performed
through C-scan inspection and visual inspection of the permanent indentation.

Impact test was performed using a drop tower system with a 2,028 kg mass and 16mm
spherical impactor. Composite laminate plates of 150x100mm2 with 4,4mm thick were made
from carbon fiber/PEEK resin prepreg using an unidirectional symmetrical stacking sequence
[02/452/902/–452]2S . The detailed material properties of the composite plate are summarized
in Table 1.

Et
l (GPa) Tensile Young’s modulus in fibre direction 150

Ec
l (GPa) Compressive Young’s modulus in fibre direction 140

Et (GPa) Transverse Young’s modulus 9
Glt (GPa) Shear modulus 5
Snt (MPa) Transverse failure stress 60
Stt (MPa) Shear failure stress 160
Xcrush (MPa) Longitudinal compressive mean crushing stress 250
νlt Poisson’s ratio 0.3
εt0 Tensile strain in fibre direction at damage initiation 0.0167
εc0 Compressive strain in fibre direction at damage initiation -0.0096
Gt

I (N mm−1) Fracture toughness for mode I in traction 80
Gc

I (N mm−1) Fracture toughness for mode I in compression 40
Gd

I (N mm−1) Interface fracture toughness for opening mode (I) 0.5 → 1
Gd

II (N mm−1) Interface fracture toughness for shear mode (II and III) 2 → 0.4

Table 1. Material properties of carbon fiber/PEEK laminate for numerical simulations

Firstly, a numerical simulation of 20 J impact was performed with Gd
I = 1N mm−1 and

Gd
II = 2N mm−1 but the results are not accurate with respect to the experiment. A second

simulation was performed with interface fracture toughness values of Gd
I = 0,5N mm−1 and

Gd
II = 1N mm−1. Figure 1 shows the comparison of the delaminated areas through the thickness

obtained from the experimental test (a) and impact damage model (b). The model under-predicts
the delaminated areas.

It has been reported the effects of shear displacement rate on the mode II interlaminar
fracture toughness in graphite/PEEK laminates [5]. It is shown that the PEEK material exhibits
ductile crack growth at low rates and brittle crack growth at high rates. The change on fracture
mechanism resulted in a decrease from 1,9 to 0,4N mm−1.

Keeping Gd
I to 1N mm−1 and decreasing Gd

II to 0,4N mm−1 as explained, the shape and
distribution of delaminated areas are in better agreement between experimental and numerical
results, as shown in Figure 1 (a) et (c). The difference between numerical results is mostly
associated with the energy required to propagate the delamination in mode II. The model is
able to predict the asymmetrical area and principal orientations of the delamination without
introducing the asymmetric damage mode in the constitutive equations.

3
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Figure 1: C-scan delamination area from impacted side: (a) experiment (b) simulation with
Gd

II = 1N mm−1 et (c) simulation with Gd
II = 0,4N mm−1

4 CONCLUSION

The capability of a cohesive-based impact damage model is investigated to predict more com-
plex three-dimensional damage patterns induced by impact. The numerical simulations were
validated against experimental results.The proposed formulation has shown a good ability to
predict the low-velocity impact behavior of IM7/PEEK composite laminates. The results re-
ported in [5] are verified through two simulations with different constant values of Gd

II . In
order to capture the main differences between the predictions and experiments, the observed
Ultrasonic C-Scan delamination size and shape at interfaces are reported and discussed. Fur-
ther investigations are needed to clarify the main reasons of the discrepancies.
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ABSTRACT

Driveline vibrations of a truck are a cause of strong discomfort for drivers, and have to be
investigated in early design stages. In order to develop analytical and numerical tools for the
prediction of vibration of such a heterogeneous and composite structure, a deep knowledge of
the physical phenomena involved is imperative. Few experimental studies have been performed
on truck vibrations, and they mostly concerned single components of a vehicle. Therefore an Ex-
perimental Modal Analysis (EMA) of a complete truck has been performed in order to observe
vibratory phenomena and determine influencing parameters involved in the vibration trans-
mission. Low Frequency and High Frequency ranges were located, and the so called Medium
Frequency range was determined. In the latter, interesting transition and interaction phenom-
ena take place, which are thought to have a first order influence on vibration transmission over
trucks.

The results of the test campaign are used to validate a pre-design Finite Element model
of the complete vehicle, which is subsequently used to investigate the phenomena observed in
the experimental phase.
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1 INTRODUCTION

Experimental Modal Analysis ([1], [2]), one of the best known techniques to characterize the
dynamic behaviour of a structure, is commonly applied in the heavy vehicle industry ([3], [4],
[5]). Though, studies usually focus on the dynamics of single parts of a vehicle and no EMA of
a whole truck exists, to the authors’ knowledge, in the literature; that is why a test campaign was
launched, with a twofold objective: give a preliminary idea of the dynamic phenomena found in
a heavy vehicle and provide an experimental reference for the validation of a numerical model.

The numerical model will be used for assessments on vibratory performance estimators.
The need for a numerical model to perform this kind of assessments is of primary importance
for truck analysis, due to the large variability in truck configurations, which makes the study of
every specimen unachievable.

Along with EMA, another test campaign has been launched, to perform the so called
Operational Modal Analysis, or output-only Modal Analysis. Results were not promising, both
from the point of view of their quality and from the point of view of the comparison with modal
parameters identified through hammer tests. This bias can originate from incorrect hypotheses
formulated on the current excitation, or from modifications that the structure encompasses when
excited in its real operating conditions. The authors decided to rely only on hammer test results
in view of future exploitation for numerical models validation.

2 TEST SETUP AND CONFIGURATIONS

A heavy vehicle is roughly made up of a chassis, a cabin, a powertrain, axles, and elements
suspended to the chassis (Fig. 1). It appears as a composite structure, from the point of view
of the architecture and of the dynamic couplings among its components, in other words, it
is a composite structure on a macroscopic scale (opposed to the microscopic scale where the
composite nature of some materials shows up).

The chassis constitutes the main transfer path for vibration originating from the pow-
ertrain. This is the reason why the current analysis focuses on the chassis; all the elements
suspended to the chassis are also considered important, because of the way they are supposed
to modify the dynamic stiffness of the former. The test campaign has been performed on a
Medium duty truck, having a Gross Vehicle Weight (GVW) of 12 tonnes.

Two configurations have been studied:

• Configuration A: unloaded truck;

• Configuration B: truck loaded with superstructure.

The superstructure is used to simulate the truck payload; it is a welded frame that ap-
proximately reproduces the torsional stiffness of common truck payloads. The superstructure
has been tested itself in free-free boundary conditions, to determine its modal properties.

Impact testing is performed on these two configurations, and respective modal parame-
ters are then compared; comparison between configurations A and B allows drawing conclu-
sions on the effect of chassis stiffness modifications and mass addition.

The truck has been tested while lying on its tyres; indeed, it is assumed that free-free
boundary conditions are not attainable (based on the rule of thumb stating that rigid body fre-
quencies should be below 10% of the first flexible mode, [1], [2]), thus the boundary conditions
are rather chosen to fit the numerical model conditions. As a matter of fact, testing a massive
structure on its suspensions is a common practice in Ground Vibration Testing of aircrafts.

The structure is excited through an impact hammer, heavy enough to inject a sufficient
amount of energy into the structure. Measurements are performed on the frequency range [0 Hz
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Figure 1: Truck geometry

- 256 Hz]. Pre-test check of input excitation allows limiting the validity of Frequency Response
Function’s (FRF) to the frequency range [0 Hz - 160 Hz]: a drop of 10 dB in the power spectrum
of the injected force highlights the value of this limiting frequency, based on a common rule of
thumb ([1], [2]).

A compromise between testing time and testing accuracy leads to choose a frequency
step of 0.25 Hz for all acquisitions, thus causing a limitation with respect to the estimation of
damping at low frequencies; the authors evaluate that a damping ratio of 1% (a realistic value
for such a structure) could be estimated with sufficient accuracy only above 25 Hz. Thus the
damping estimation is affected by a certain degree of inaccuracy.

The structure is impacted at two reference points so as to excite the highest possible
number of modes. Additional measurements are also performed with input forces on several
suspended elements: these sets of measurements serve to inject energy specifically to these
components, thus estimating their dynamic characteristics in a boundary condition correspon-
dent to the attachment to the chassis; this boundary condition is intermediate between a fixed
interface, and a free interface.

FRF’s were acquired by roving tri-axial accelerometers over 143 points (most of whose
lied on the chassis). Mass loading from accelerometers was considered to be negligible, because
of the lightness of accelerometers (ICP sensors weighting 10 g are used) with respect to the test
object.

Modal parameters are identified through the commercial software LMS R© Tes.Lab, and
a poly-reference Least-Squares Complex Frequency-domain (LSCF) estimation method (Poly-
Max) is exploited, [6]. The sum of all the measured FRF’s and Complex Mode Indicator Func-
tions (CMIF) are fed to the PolyMax algorithm, and physical resonances are detected thanks to
a stabilization diagram.

3 DYNAMIC CHARACTERIZATION OF THE UNLOADED TRUCK

The analysis of the sum of all FRF’s brings to light a fundamental information: in the frequency
range considered, the structure presents well separated behaviours that are typical of the Low
Frequency (LF) and High Frequency (HF) ranges. Besides, a transition range commonly called
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Medium Frequency (MF) range is observable (Fig. 2). The LF behaviour is characterized by
the presence of rigid body modes of the vehicle and of its main suspended constituents (cabin,
powertrain); modal density is quite high. The MF behaviour is dominated by elastic deformation
modes of the chassis, coupled with all the other components; modal density is lower than in the
LF range, while damping is increasingly high. The HF behaviour is characterized by a sort
of structural diffuse field; here only local deformation shapes are visible, and modal density is
extremely low.

Figure 2: Sum of all the measured FRF’s and characteristic frequency ranges.

Two main conclusions can be drawn, these being:

• to study whole-body vibrations of a complete truck in an early design stage, all the in-
formation can be found in the frequency range [0 Hz - 160 Hz]; phenomena at higher
frequency are barely an extension of the HF behaviour, or local phenomena that attain to
the analysis of limited parts of the truck;

• a transition frequency can be defined, lying at about 50 Hz, where the behaviour of the
structure changes from global to local.

The transition from global to local behaviour, or equivalently from long wavelength to
short wavelength wave propagation, happens in the MF domain; here, the interaction between
stiffer and more flexible components (the suspended elements and the chassis) is thought to
drive the said transition. A number of studies on the said interaction is found in the literature,
but they are rather analytic or applied to academic structures. Thus further analyses are needed
to highlight the causes and physics of the behaviour for the case at hand; they can be better
carried out with numerical tools, as the models that are the final objective of this study.

3.1 Modal parameters estimation

A table of modes (natural frequencies, modal damping and corresponding deformation shapes)
is constructed; both global and local modes are identified, depending on the frequency range
considered (Figs. 3a, 3b and 3c).
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(a) Mode 10: 9.30 Hz, 1st hori-
zontal bending.

(b) Mode 33: 39.64 Hz, local
bending of front chassis LHS.

(c) Mode 56: 110.67 Hz, local
modes.

Figure 3: Some estimated mode shapes.

A check on the quality of modal parameter estimation shows that modal data are better
identified in the low and mid frequency ranges (up to approximately 50 Hz), where identified
modes have mostly real deformation shapes.

3.2 Influence of payload on the dynamic behaviour

The dynamic behaviour of the superstructure can be determined with a high degree of accuracy,
due to its low modal density. Nevertheless, it is interesting to analyze how the superstructure
influences the modes of the complete structure, when lying on it. The superstructure lies on
the chassis, and their connection is made through a wooden interface and clamping bars: the
transmission of forces turns out to be distributed along a line, instead of concentrated on discrete
points.

As one could expect, the main consequence of adding the superstructure to the com-
plete vehicle is a frequency shift (the superstructure represents 30% of the mass of the unloaded
vehicle), Fig. 4. Nonetheless, this frequency shift changes at each mode (natural frequencies
increase in certain cases and decrease in others, when going from configuration A to configu-
ration B) due to the fact that the added mass has its own dynamics. It is interesting to see the
effects on deformed mode shapes: this is done synthetically by calculating the Modal Assurance
Criterion (MAC) matrix for the modal shapes of the two configurations.

4 NUMERICAL MODELS

A Finite Element (FE) model has been assembled for a complete truck; it comprises all the main
components of the tested truck, with different levels of detail, Fig. 5.

This model must be validated for dynamic calculations. Due to the differences between
numerical and experimental meshes, and having experimented some bias when calculating
MAC matrices [7], the authors decided to update the FE model based on frequency response,
instead of mode shapes; the target of the model update is to match both natural frequencies and
response amplitudes.

The comparison of measured and calculated frequency responses is promising, since
orders of magnitude and trends of frequency response functions are well predicted. Besides, the
calculation confirms that impact test results, instead of operational test data, should be used for
comparison with numerical data. Current work aims at updating the numerical model.
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Figure 4: Comparison of the sum of FRF’s measured for configurations A and B.

Figure 5: Complete Vehicle Model.

4.1 Applications of the FE model

Once validated, the presented FE model is used to make assessments on the physical phenomena
found in the experimental phase.

One interesting application consists in the evaluation of the interface conditions between
chassis and suspended elements; possible estimators for the interface conditions are:

• displacements at points of the interface;

• forces transmitted between the chassis and suspended elements at the interface;

• normal modes of the suspended elements in different boundary conditions (free-free,
fixed, screwed on a siderail).

Interesting conclusions can also be done by comparing the computed natural frequencies
for suspended elements and assemblies. Fig. 7 shows modes of the chassis and of the main
elements suspended to the latter; modes of the chassis and suspended elements assembly and
of the complete vehicle are also shown. What is shown is barely the mode count, thet helps to
identify the frequency ranges spanned by each component.
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Figure 6: Point FRF’s on a selected point of chassis: comparison between experimental and
measured curves.

One can see that the first modes of the chassis appear at quite low frequency, while
the first modes of the suspended elements appear at high frequency. One thus observes the
interaction between a flexible component (the chassis) and stiffer ones (suspended elements),
that has been mentioned in Section 3, the notion of stiff and flexible being here intended to be
iso-mass. By deeply inspecting mode shapes related to the shown natural frequencies, one is
able to understand how coupled modes originate.

4.2 Future developments for numerical models

The objective of the project which is the framework of this study is the development of numeri-
cal tools for the prediction of vibro-acoustic estimators in truck cabins. The named tools should
be used at an early design stage, so one should be able to perform rapid calculations thank to
these tools. Conventional Finite Element is seemingly not the most adapted technique to fulfill
the aimed task, so the authors identified better methodologies to develop the said tools: the
Wave Finite Element method ([8]), in conjunction with suitable reduction techniques, will be
employed to build reduced models for the calculation of the frequency response of a simplified
structure representing the vehicle. The FE model presented here will represent a reference for
the reduced models.

5 CONCLUDING REMARKS

An experimental modal campaign on an industrial vehicle is described and the estimation of
modal parameters carried on. Physical phenomena linked to the onset of the so called Mid-
frequency range are highlighted thanks to the measurements. The results of the experimental
campaign can serve as a reference for comparisons with numerical models developed in the
truck industry, most of all when concerning frequency ranges and expected physical phenom-
ena. Measurements allow identifying local vibration phenomena, and investigating the influence
of mass and stiffness changes.

The estimated modal parameters are used as a basis for modal update of a FE model.
First correlations are promising, but an effort has to be made to further improve the predictability
of the numerical model. One possible application of the numerical model is showed, and its
usefulness in interpreting the experimental phenomena is illustrated. Future reduced numerical
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Figure 7: Mode count for components and assemblies. � + ◦ ∗: suspended elements in free-
free BC, 4: frame in free-free BC ×: frame assembly in free-free BC, �: complete vehicle
lying on its tires

models are briefly introduced and their relationship with the FE model explained.
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ABSTRACT

Composite materials are often used in the automotive industry to reduce acoustic vibrations and
the sound pressure in a car by the use of damping patches or changing car part fabrication. The
material make-up of these composites plays a big role in the effectiveness of damping treatments
and is therefore a large focus in the vehicle design process. In this study, a genetic algorithm
(GA) is used to test the different configurations of laminated composite structures and is com-
pared with the results of a particle swarm optimization (PSO) and gradient-based algorithms
that are performed with the same design variables. Aiming at producing a composite structure
containing a high modal loss factor, the design variables are considered as: 1) viscoelastic ma-
terial thickness, 2) fiber orientation angle, and 3) carbon layer thickness. The ultimate goal of
the designed composite structure is to create the optimal balance between minimum vibrations
and a minimum mass of the structure.
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1 INTRODUCTION

The automotive industry often faces the problem of high vibrations in vehicle structures due
to large excitation forces on the body. Fiber-reinforced composites are frequently used in
lightweight structures due to their high strength-to-weight ratio as well as good fatigue and
corrosion properties versus those of metal alloys. These composites provide better damping
properties than those of steel or aluminum but must be paired with a viscoelastic layer to pro-
vide more efficient damping. This combination can have a stacking sequence similar to a sand-
wich, with two composite structures surrounding a viscoelastic layer. This viscoelastic core
exhibits high shearing during deformation and, therefore, dissipates vibratory energy more ef-
fectively than the composites alone. Mead and Markus [1] developed the theoretical models
for the axial and bending vibrations of sandwich beams with viscoelastic cores. Two possible
applications exist for these kinds of composite structures: constrained layer damping (CLD)
treatment patches and car part fabrication. Car part fabrication is easier to be used in industry
than the patches and is the focus in this paper. The laminate is not limited to only three layers,
fortunately, and is thus able to be optimized for the best damping configuration. Optimal design
of these constrained layer damping treatments has long been a subject of high focus for reducing
vibrations in structures by means of the maximization of modal damping ratios and reduction
of modal strain energies. This maximization and reduction are achieved by determination of the
best material, layer sequence, and laminate make-up, while also aiming at reducing the mass of
the treatment.

This paper aims at maximizing the modal loss factor of sandwich structures comprised
of varying laminas with respect to their mass as well as to the improvement of their noise,
vibration, and harshness (NVH) performance. Multiple optimization algorithms are used to de-
termine the most efficient laminate make-up for damping purposes, as well as the modal strain
energy method to calculate strain energies stored and dissipated in the composite layers, and
finally these optimization algorithms calculate the modal loss factor for the complete structure,
which utilizes a dynamic response in terms of the undamped natural frequencies. A complex
modulus approach is used to evaluate the viscoelastic material layers in the given frequency
range due to the material experiencing dynamic loading. A comparison between the effective-
ness of the different optimization algorithms will also be carried out. Based on the selected best
algorithm, the optimal created design will be applied to a vehicle structure in order to validate
the efficiency for acoustically problematic automobile parts.

2 OPTIMIZATION ALGORITHM SELECTION

To determine the best optimization algorithm, an extensive literature review was conducted and
each different algorithm will be compared based on the results of the literature. The first algo-
rithm is the genetic algorithm (GA) [2] due to its ability to work with large and complicated
variable problems. A GA is an evolutionary optimization technique modeled after Darwin’s the-
ory of “survival of the fittest” in order to improve each population of solutions. Fortunately, the
GA will not be stuck in a local optimum if the population size is significantly large. Araújo et al.
[3] maximized the modal loss factor of a structure using single and multiobjective optimizations
based on GA. The design variables that they used were fiber orientation angles of laminate face
layers and thickness design. Their results showed that this algorithm can substantially improve
the modal loss factor for simply supported sandwich beams and plates. Focusing on rectangular
plates, Montemurro et al. [4] maximized the first N modal loss factors of the laminate structure
through the use of a GA. Their design variables included the number of layers, layer thickness,
and fiber orientation, and the results proved GA to be very flexible and applicable as well as
able to reach a suitable optimum. According to Rahul et al. [5] the optimization of composite
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structures using an island model parallel GA method produces a good convergence and a lower
processing time, i.e., one tenth of the time of sequential GA.

Gradient-based methods [6], abbreviated to GB for this paper, based on the gradients
of the constraints and objectives, can approximate solutions when mathematical closed-form
expressions are not available. Therefore, these solutions are only local optima, but the advan-
tage is a faster convergence rate. The research of Araújo et al. [3] proved that the use of GB
methods had a computation time fifteen times faster than those of GA for the case of damping
maximization of laminated sandwich composite structures. Their design variables were layer
thickness and fiber orientation angle. Moita et al. [7] significantly increased the modal loss fac-
tor of triangular plates by optimizing fiber orientation angles and layer thicknesses, the design
variables, by use of a GB optimization algorithm.

The third optimization algorithm investigated in this paper is the particle swarm op-
timization (PSO) algorithm [8]. This algorithm is population-based and stochastic, modeled
after the flocking behavior of birds. Each solution in the search space of this method is called
a particle, resembling one bird out of a flock. The position of this particle in the search space
changes based on the best solution in its individual history, resembling the bird’s own flying
experience, as well as the best solution among all of the particles, i.e., the flying experience of
the other birds. From these adjustments, PSO has an optimal potential to benefit from parallel
computing. Suresh et al. [9] utilized the PSO method to optimally design a composite box beam
for a helicopter rotor blade. They concluded that the use of PSO produced closer results to the
optimum values than those produced by GA because PSO produced greater damping values
for five different simulations in comparison with GA. However, the computational times were
similar with PSO converging after 32.34 minutes and GA after 42.35 minutes. Kathiravan et
al. [10] also used PSO in comparison to GB methods for the maximization of failure strength
in thin-walled composite box beams. They found that PSO gave superior or equivalent results
to the GB methods. The PSO was also used by Bargh and Sadr [11] for the optimization of
the lay-up design of laminated composite plates. It was seen that the performance of the PSO
was more efficient than the GA. Manjunath and Rangaswamy [12] optimized a ply stacking
sequence with the use of PSO. They compared the results from PSO to those of GA and found
that PSO produced better results. Fortunately, the PSO algorithm does not need to begin from
different initial points as seen in GB methods.

3 VISCOELASTIC MATERIALS: PROPERTIES AND CHARACTERIZATION

Viscoelastic materials can be highly effective in controlling the dynamics of structures in noise
control applications. The structural vibrations and the underlying noise radiation can be re-
duced and controlled by using these materials, whose properties are dependent on the room
temperature and the frequency of the applied cyclic load. These characteristics are significant
to accurately model viscoelastic materials in numerical simulations. The complex modulus of
the behavior of viscoelastic materials was deeply investigated by Jones [13]. For the purpose
of this paper, only the frequency dependency is to be taken into account. Also, the proper-
ties of viscoelastic materials are defined in a complex domain, having both real and imaginary
components. The real component is associated with the elastic behavior of the material and is
called the storage modulus E ′ , while the imaginary component is associated with the viscous
material behavior and is called the loss modulus E ′′ . These properties can be modeled using the
following equation:

E∗ = E
′
+ E

′′
, (1)

Various measurement methods exist in which mechanical properties of materials can be deter-
mined. For example, dynamic mechanical analysis (DMA) [14] provides the characteristics of
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viscoelastic materials over a large range of temperatures and frequencies. As previously stated,
only the frequency dependency is analyzed in this paper.

4 MODAL STRAIN ENERGY METHOD

Throughout literature, the established damping model of fiber-reinforced composites, first de-
veloped by Adams and Ni [15], has been adopted by additional authors to improve the analysis
of different composite structures with embedded viscoelastic layers [16]. This method is called
the modal strain energy method and is used in this paper to simulate the damping in a laminated
composite structure with embedded viscoelastic layers. This method defines the damping char-
acteristics of a structure by the ratio of dissipated energy to stored energy during a stress cycle.
The total structural damping loss factor can be expressed as

η =

k∑
ηkijU

k
ij

k∑
Uk
ij

(i, j = 1, 2, 3), (2)

where ηkij and U k
ij are the damping loss factors for the layer k of the composite materials and

strain energy stored in the layer k, and U k
ij is the summation of U e

ij where e represents each
element in a layer, related to the stress component σe

ij [17]. This relationship with respect to
stress and strain [18] can be written as

U e
ij =

1

2

∫
σe
ijε

e
ij dV

e. (3)

Figure 1 defines the fiber directions, where number 1 is in the fiber direction, 2 is transverse to
this direction, and 3 is through the thickness direction. Theta represents the angle between the
x-axis and the fiber direction.

Figure 1. Fiber directions

The modal strain energy method can also be applied for the case of composite materials
with embedded viscoelastic layers by considering that the viscoelastic material loss factor can
be represented by

η(f) =
E

′′

E ′ , (4)

where E ′ and E ′′ are the storage and loss modulus of the viscoelastic material, respectively,
and can be integrated into Eq. 2 for ηkij when k is the number of the corresponding viscoelastic
layer. This η represents the material loss factor for all directions, as the viscoelastic material is
isotropic. See Eqs. 6 and 7 for the loss and storage modulus equations.
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5 OPTIMAL DESIGN FORMULATION

A common goal in the automotive industry is to improve acoustic performance in vehicles with-
out sacrificing structural dynamic stiffness. One means of improving this acoustic performance
is through the use of CLD patches. Another method consists of the development of materials
suitable for car body manufacturing, aiming at reducing poor acoustic performance. This paper
focuses on the development of efficient composite structures made of fiber-reinforced com-
posite and viscoelastic layers. In order to efficiently design these automobile parts, the design
variables are taken as: layer thickness and fiber orientation based on mechanical properties. The
objective by means of various optimization algorithms is to improve the acoustic performance
of structures. The first improvement can be made through the increase in damping capabilities
of the composite structure in order to minimize the resonance vibrations of the vehicle. The op-
timization work flow can be seen in Figure 2. The pre-processor ANSA is utilized to change the

Figure 2. Optimization work flow for one objective value function.

design variables of the optimization and calculate the mass, NASTRAN is used as the solver,
and Meta is used to calculate the damping via a post-script. This post-script was developed to
calculate the loss factor at a faster rate by reading all of the stresses and strains of every single
layer simultaneously.

In a literature review on the effect of damping layers in the laminate, Zhang and Chen
[19] found that a laminate sequence of viscoelastic layers between layers of carbon composites
had the highest modal loss factor. They found that the shear deformation in the viscoelastic
layers is maximized when a central carbon composite layer is inserted between two viscoelastic
layers. This, in turn, increases the modal loss factor of the structure. The layer sequence will
behave better than one viscoelastic layer inserted between two composite laminates.

The laminate sequence scenario 2 will then be used in several optimization problems
with the design variables and the constraints remaining the same. The problem that is solved
through these optimizations is the maximization of damping, averaging the damping values at
the natural frequencies between 30 and 200 Hz, as well as the minimization of the composite
mass. The reason for this low frequency range is that automobile acoustic issues are mainly
induced by the automobile panels’ vibrations in this range. The damping values were averaged
over the natural frequencies in the frequency range to improve the damping of all mode shapes.
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However, the damping is dependent on the frequency, and the increase in damping will not be
equivalent between all mode shapes. Averaging the damping resolves this issue and allows for
a better treatment of mode shapes for all frequencies.

6 MODEL VALIDATION

To validate the implementation of an in-house strain energy model a test is developed and
compared for glass fiber composites. The strain energy model, previously described, is able
to calculate the damping of any geometry and for any boundary conditions through the use
of FEM based on the parent material specific damping capacity information resulting from
measurement on a cantilever beam. This was described by Berthelot [16]. The specific damping
capacities, ψ, and material properties of the layers are taken from Adams and Maheri [20]. The
test involves a cantilever beam with one clamped boundary experiencing an excitation at a point
near the clamped edge. The material of the beam is considered a glass fiber/epoxy laminate with
E11 = 41.5 GPa, E22 = 10.9 GPa, G12 = 4.91 GPa, ν12 = 0.32, ψ11 = 1.61%, ψ22 = 6.7%,
and ψ12 = 7.3%, where E represents the Young’s modulus, G represents the shear modulus of
the material, ν represents Poisson’s ratio of the material, and ψ represents the material’s specific
damping capacity in the directions of tangential and transverse directions, 1 and 2, respectively.
The relationship between specific damping capacities, ψ, and modal loss factors, η, [17] is:

η =
ψ

2π
. (5)

The frequency is fixed at 50 Hz to test the effects of the fiber orientation on loss factors. The
beam consists of eight unidirectional layers, each of which has a thickness of 0.5 mm, and the
width-to-length ratio of the beam is 1:17. The loss factor is tested for various fiber orientations
between 0◦ and 90◦. The results will then be compared with those of Bilups and Cavali [21]
to show agreement between the results gathered in this test with those of previously developed
methods, resembling the curve resulting from the Ni/Adams equation [15].

7 APPLICATIONS

The first application in this paper involves a cantilever beam made from eight symmetric layers
of carbon HMS 209. The mechanical properties of the carbon composite is as follows: E1 =
189 GPa, E2 = 6.08 GPa, G12 = 2.72 GPa, ν12 = 0.3, ψ1 = 0.64%, ψ2 = 6.9%, and
ψ12 = 10%. The aspect ratio of this cantilever beam is 1:17 and the cantilever exhibits a
boundary condition of one clamped edge close to the excitation point. The design variables in
this scenario involved the fiber orientation angles. The mass is kept constant, 0.1925 kilograms,
and the specific damping capacity is averaged over all of the natural frequencies between 30
and 200 Hz and is considered as the objective function to be maximized. The results can be
seen in Figure 3.

A validation also to be carried out in this paper, before optimizations, is a simulation
and comparison of the stack-up sequence and their damping effectiveness. The first scenario
is made of a viscoelastic material with a thickness of 4 mm embedded between two composite
material layers of 3 mm. The viscoelastic material exhibits the following mechanical properties
[19]

E
′
(f) = 0.0041 + 0.0322 log(f) (6)

and

E
′′
(f) = 0.0077 + 0.0433 log(f) (7)
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in GPa, where E ′ and E ′′ are the storage and loss modulus of the viscoelastic material, respec-
tively.

The second scenario is comprised of a composite material of thickness 2 mm, a vis-
coelastic material 2 mm thick, another composite material with a thickness of 2 mm, another
viscoelastic layer of 2 mm, and lastly, a composite material layer of thickness 2 mm. An im-
provement of 6% from the original percentage is observed for the second scenario with respect
to the specific damping capacity percentage.

Based on the results of this application, the best layer stack-up sequence proved to be the
second scenario. This layer sequence is further developed to optimize its damping capabilities
for a roof based on the problem solution described in the previous section. In this test, the fiber
orientation was chosen to vary between 0◦ and 90◦, and the fiber orientations of the first and last
layer were considered as one design variable to be changed similarly in order to guarantee that
the laminate would be symmetric. The thicknesses of the various layers were varied between
0.6 mm and 1.4 mm, and the thicknesses of the different carbon composite layers were consid-
ered as one design variable to be equally changed together, as it was found in Zhang and Chen
[19] that this configuration produced a maximum loss factor. The real-life application is then
carried out in this paper for the automotive industry. In one part of the automobile, in this case
a car roof, the material is optimized based on the problem solution previously described, with
clamped boundary conditions. The results of each optimization solution will then be evaluated
for the best material make-up for this roof. The solution will then be applied in the entire roof,
and the structure will be coupled with fluid inside the vehicle to compare the sound pressure at
the driver’s ear position. Lastly, a comparison between each different optimization algorithm
will be carried out with respect to convergence time and the performance quality of the optimal
result obtained for each algorithm.

8 RESULTS AND DISCUSSIONS

The two previously described optimization algorithms, GA and PSO, were utilized to optimize
the damping of a cantilever beam and the GB method for the damping of a car roof. The results
of the cantilever beam can be seen in Fig. 3, where the blue dots represent the objective function
evaluations, and the red dot shows the optimal result of the PSO algorithm. This simulation

Figure 3. Beam damping maximization using PSO method.

has shown that changing only the fiber orientation, between 0◦ and 90◦, while keeping a similar
mass, can improve the loss factor by a factor of approximately 2.9. The optimal fiber orientation,
seen in red and coming from PSO, consisted of a fiber orientation of [90, 7, 90, 90]2, starting at
layer one, with a loss factor of 0.023. The loss factor as a function of the carbon fiber orientation
can be seen in Fig. 4a and Fig. 4b. It can be seen in Fig. 4a that the high loss factor is obtained
when the fiber orientation of layers 1, 3, 5, 6, and 8 are oriented at 90◦ and in Fig. 4b when

7
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layers 2 and 7 are oriented at 7◦. The high damping value of the optimal design configuration
obtained by use of PSO can be explained by the high Young’s modulus in the second direction.
This high Young’s modulus will produce a high strain energy stored in this second direction.
As the specific damping capacity of the material, ψ2 = 6.9%, is much higher in the second
direction than the first direction, ψ1 = 0.64%, a high composite loss factor will be produced,
based on Equation 1. By adding the layer with a fiber orientation of 7◦ between the layers, the
inter-laminar strain energies were increased, meaning that the strain energy in the direction 1,2
increased and produced a higher loss factor as the specific damping capacity of the material
is very high in this direction, ψ12 = 10%. The second beam configuration, from GA, for the
cantilever beam consisted of a fiber orientation of [44, 44, 44, 44]2 and a loss factor of 0.018.
The results of this GA can be seen in Fig. 4c. The highest loss factor from these results are
obtained for all layers oriented at 44◦, as seen in the graph. However, for GA, the Young’s
modulus in the second direction was not high due to the fiber orientation 44◦, which produced
a loss factor less than that produced by PSO. The PSO converged after 10 iterations with a total
of 200 objective function evaluations and the GA after 16 iterations with 340 total objective
function evaluations.

Figure 4. Loss factor as a function of fiber orientation.

The same procedure is applied to the roof of a car. By constraining the mass between
11 and 13 kg, the averaged damping over the natural frequencies between 30 and 200 Hz was
considered as the objective function to be maximized in the optimization process. The PSO
algorithm converged to the best damping value, the GA converged second best, followed by the
GB method. The results can be seen in Fig. 5. Also, the GA optimization required many more
iterations than the GB optimization method, while the GA and PSO were similar and required
more iterations than the GB method.

The green dots in Fig. 5 are the accepted objective function evaluations and the pink dots
are the rejected objective function evaluations due to the mass constraint defined by the user.

8
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Figure 5. PSO and GA optimization results for the composite roof structure.

Each algorithm performed in different ways. The carbon layer thickness converged to 1.2 mm
in GA, shown in Fig. 5a, left, and the PSO carbon layer thickness converged to the minimum
allowable thickness, 0.6 mm, in Fig. 5a, right. The viscoelastic layer thickness converged to
1.35 mm in GA, shown in Fig. 5b, left, and the PSO viscoelastic layer thickness started to
converge at 0.9 mm, in Fig. 5b, right. In terms of fiber orientation angles, the GA converged
to 85◦, Fig. 5c, left, while the PSO fiber orientation angles converged to 90◦, Fig. 5c, right.
The GA converged to a mass of 12 kg while the PSO converged to a mass of 11.3 kg, Fig. 5c
left and right, respectively. This difference of mass is a result of the fact that the PSO carbon
composite thickness converged to a lower value, as the carbon is heavier than the viscoelastic
material. All convergences were considered as the thickness, angle, or mass that produced the
highest loss factor value.

9
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To compare the performance of each optimization method, the results of each method
are recorded and are displayed in Table 1.

Table 1: Layer properties and loss factor of optimization results for the composite roof structure.
carbon
angles 1
and 6

carbon
angle 3

carbon layer
thicknesses

first viscoelastic
layer thickness

second viscoelastic
layer thickness

loss factor
percentage

PSO 90◦ 90◦ 0.60 mm 1.34 mm 0.98 mm 4.6%
GA 85◦ 81◦ 1.22 mm 1.39 mm 1.23 mm 4.5%
GB 81◦ 70◦ 0.8 mm 1.4 mm 1.3 mm 4.4%

In addition to these results, the objective function evaluations, which occur within each
iteration, were observed. The PSO was observed to have the best convergence performance in
terms of reaching their optimum values, followed by GA and GB, respectively. The difference
between the PSO optimum value and the GB optimum was only around 0.2%. However, the GB
converged with 3.2 times fewer objective function evaluations in comparison with PSO. PSO
converged after 300 objective function evaluations over 15 iterations, GA performed with 250
objective function evaluations over the course of 9 iterations, and lastly, the GB optimization
performed with 94 objective function evaluations over the course of 10 iterations.

A mass of 11.8 kg was further considered to be able to compare two different results for
the same mass. The optimal of PSO observed an averaged damping of 0.046, and a similar-mass
scenario observed an averaged damping of 0.013. The two different layer compositions can be
seen in Table 2. The layer thicknesses are more or less the same, with the only differences
being the carbon fiber orientation angles, which performed best for 90◦. This best performance
for 90◦ comes from the fact that a high strain energy is stored in the material in the second
direction, which is produced by a high Young’s modulus in the second direction, in conjunction
with the high specific damping capacity of the material in this direction and agrees with the
results found in [19] for their study performed on beam structures. According to Zhang and
Chen [19] the fiber orientation angles of compliant layers played a crucial role in improving the
dissipation capacity of the complete composite. They observed that the stiffer the constraining
layers were, the higher the shear deformation in the viscoelastic layers will be and the higher
the loss factor of the composite. The second design has more energy stored in the first direction,
causing a lower total loss factor due to the lower specific damping capacity of the material in
this direction.

Table 2. Comparison for same-mass and optimal PSO design results.
carbon
angles 1
and 6

carbon
angle 3

carbon layer
thicknesses

first viscoelastic
layer thickness

second viscoelastic
layer thickness

loss factor
percentage

optimal
design

90◦ 90◦ 0.62 mm 1.39 mm 1.16 mm 4.5%

same-
mass
design

2◦ 30◦ 0.62 mm 1.37 mm 1.18 mm 1.4%

Considering these two scenarios, the averaged strain energy between 30 and 200 Hz was
calculated for the roof of the car. As expected, the strain energy values were efficiently reduced
in the optimal composite in comparison with the composite of similar mass but less damping.
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The strain energy was used in this case to compare two different roof configurations, as it
has been previously proven by Jaber et al. [22] that placing damping treatments on locations
of high strain energy is able to greatly reduce the vibratory energy in an automobile part. The
optimal design has a minimum strain energy value and shows that it does not require any further
damping treatment.

The strain energy on the roof of the car for the two scenarios, along with a reference
strain energy of the aluminum roof, can be seen in Figure 6. Through optimization, the lami-
nate roof caused an reduction of the strain energy in the structure, even with the most poorly
performing objective function evaluation from PSO. Moreover, the strain energy was better re-
duced by the optimum objective function evaluation laminate structure make-up created by the
PSO method.

Figure 6. Strain energy comparison for PSO results with the same mass.

In order to better illustrate these damping solutions in a real-life application, the newly
designed roof was put in place of the original aluminum roof of a car. The structure was coupled
with the fluid within the vehicle chassis, and the sound pressure was calculated at the driver’s
ear position. The results can be seen in Figure 7.

Observed from these results, the sound pressure at the driver’s ear position was reduced
by around 5 dB (SPL) for some frequencies. The reduction was not similar for all frequencies
due to the fact that the increase in the damping is not similar over all frequencies due to its
dependance on the mode shape of the structure. This reduction shows that this optimization of
the material make-up of the structure itself is able to effectively improve the NVH performance
of an automobile and provides a more feasible solution than using CLD treatments because the
part is previously controlled in terms of acoustic issues through production, rather than cutting
and placing CLD treatments after production. Furthermore, the mass of the automobile roof was
effectively reduced from 14.17 kg to 12 kg. It is suggested that further studies be conducted
to investigate if this newly designed roof will affect other testing requirements such as crash
testing and dynamic stiffness testing, as well as a cost comparison between designs should be
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Figure 7. Sound pressure level comparison at driver’s ear position.

conducted.

9 CONCLUSIONS

In order to design a vehicle with a good lightweight structure, carbon composite materials with
embedded viscoelastic layers can be a potential solution to improve NVH performance lev-
els. Unfortunately, carbon composites do not always have a reliable performance and require a
very accurate design. Many parameters, such as fiber orientation, layer thickness, and laminate
stack-up sequence, can play a crucial role in the design of these NVH-improving, lightweight
structures. The modal strain energy method has been used to predict the loss factor of carbon
composites with embedded viscoelastic layers in conjunction with optimization algorithms, and
as well the frequency dependence of the viscoelastic material has been taken into account. Op-
timization algorithms can be an efficient way to optimize the design of these structures, such
as GA and PSO. The PSO proved to be more efficient and faster than the GA, followed by GB
optimization algorithms. It has been shown that changing the composition of a car roof can
effectively reduce the strain energies of said roof as well as reduce the sound pressure at the
driver’s ear position within a vehicle chassis. For this PSO, the damping value was calculated
as improving by a factor of four when compared between the best and worst optimization re-
sults for the same mass. Also, the GB optimization method is a better optimization method in
situations of large automobile parts due to the optimum varying only slightly from the PSO op-
timum, and is observed to converge at a faster rate than that of PSO. Changing the material itself
in structural parts of an automobile can provide an effective means of improving the acoustic
behavior of cars, as well as create a more efficient car part fabrication for passive control pur-
poses. Further investigations should be carried out to verify other requirements during design,
such as crash testing and dynamic stiffness testing.
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ABSTRACT

In this study, an experimental and numerical investigation regarding the mechanical behavior
of open-cell ceramic-like foam (OCCF) was carried out. The aim was to identify a continuum
model able to predict the mechanical response under complex path loadings. Uniaxial and true
triaxial tests have been done to investigate the compression behavior of OCCF. Elastic-brittle
behavior is observed under uniaxial unconfined compression loading while a crushing plateau
with high-energy absorption capacity is exhibited under uniaxial confined compression. Limited
strain rate dependence is found. The experimental results are discussed and correlated with
degradation mechanisms identified by X-ray computed tomography observation. Tested under
multiaxial loadings, the OCCF exhibits slightly transversely isotropiy. Also its yield surface
has been well described by a Deshpande-Fleck yield criterion. The Deshpande-Fleck model
for foam has been modified by introducing a dependence of the plastic Poisson’s coefficient
with the plastic volumetric strain to improve the prediction of the radial expansion. It has been
implemented into the finite-element code LS-Dyna via a usermat subroutine. Numerical results
are in close agreement with the experimental results.
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1 INTRODUCTION

In recent years, Open-Cell Ceramic-like Foams (OCCF) are widely used in many industrial
applications thanks to their physical and thermo-mechanical properties such as low density,
low thermal conductivity, high compressive strength to weight ratio and high fire resistance
[1],[2],[3]. Due to its ability to accommodate large deformation, OCCF is a promising candi-
date for energy absorption engineering applications, provided that foam parts are encapsulated
by a ductile housing to avoid mass loss during the crushing. In that case foams can be subjected
to complex multiaxial stress states. Consequently, performing simple uniaxial compression tests
without or with lateral confinement at different strain rates is not sufficient to identify a mechan-
ical model. It is therefore necessary to characterize the behavior under multiaxial loadings.
The mechanical characterization of brittle foams under complex loadings is scarcely found in
the literature unlike that of ductile foams. To understand the compressive behavior and estimate
the failure envelope of polymeric and metallic foams, Deshpande et al. [4],[5] have developed
two high-pressure triaxial systems allowing to apply a particular multiaxial loading paths on
cylindrical and cubic samples. Canto [6], developed a true triaxial compaction device com-
posed of six sliding blocks to study the triaxial behavior of very compressible materials and
powders allowing to explore more complex triaxial loading paths and for very large strains
[7][8].
In this research, the mechanical response of low density OCCF has been characterized at room
temperature under uniaxial and multiaxial loadings and notably its yield surface has been identi-
fied. Thanks to X Rays Computer Tomography observation on samples subjected to oedometric
compression test stopped a different load, the mechanisms of degradation has also been iden-
tified and correlated to the change in behavior noted on the Force - displacement curves. An
extension of Deshpande Fleck criterion[4] is proposed to predict the OCCF experimental data.
The identified model has been implemented as a user-defined material model in the finite ele-
ment code LS-DYNA[9], and numerical simulations of crushing tests were carried out in order
to validate this model.

2 EXPERIMENTAL CHARACTERIZATION

2.1 Material : microstructure, specimens geometry and procedures

The OCCF foams used in this experimental study was manufactured by direct carbonization of
a polymeric foam. The apparent bulk density of the OCCF material is about ρa = 250 kg.m−3

and its porosity is equal to n = 82 %Ȧ typical microstructure is shown in Fig. 1. Like most
foams, it is characterized by cells, empty pores and ligaments connecting cells together. The
characteristic cell-size ranges from 50 µm to 150 µm. Small-pores, the size of which being
lower than 10 µm, are also observed on the wall of the cells. Due to the manufacturing process,
the microstructure of this material is slightly elongated in the foaming direction (Fig 1b) and
explains the slightly anisotropy observed during the tests.

Quasi-static compression tests with and without lateral confinement were conducted on
cubical (a = 40 mm) and cylindrical specimens (D = 30 mm, H = 30 mm) by using an
Universal hydraulic testing machine Instron. A Split Hopkinson Pressure Bar (SHPB) system
was used to study the strain rate sensitivity of the OCCF foams. Cylindrical samples (D = 22
mm, H = 9 mm) were used for that analysis. Ex-situ quasi-static compression tests with X-
ray computed tomography analysis were performed on cylinders (D = 30 mm, H = 30 mm)
to investigate their failure mechanisms. Triaxial tests were conducted on cubes to study the
multiaxial behavior by using Cantos compaction device (Fig. 2a) installed in the triaxial testing

2
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(a) (b)

Figure 1. SEM micrographs of the OCCF foam

machine ASTREE. ASTREE comprises six independent actuators paired up along the three
perpendicular directions pushing the blocks to reduce the hole, each one sliding relative to the
others. During the triaxial tests, the imposed displacements on the cubical specimen in each
direction were measured by laser displacement sensors(Fig. 2b).

(a) (b)

Figure 2: Triaxial compression test: a) compaction device installed in the ASTREE testing
machine b) Actuators displacement measurement with a laser sensor

2.2 Experimental results

Typical compressive stress-strain curves of an OCCF subjected to quasi-static loading (V = 5
mm×min−1) with and without lateral confinement, is shown in Fig. 3. The stress-strain curve
obtained during unconfined compression test reveals the elastic-brittle behavior of that the foam
has an elastic-brittle behaviour (Fig. 3a). When lateral displacement is prevented under con-
fined conditions the compression behavior is significantly different (Fig. 3b). Three zones can
be highlighted: first a short elastic range with a brittle failure, then a crushing plateau and finally
a densification with an increase in stiffness and stress. Fig. 3c shows the slightly anisotropic
compressive response when the OCCF specimens are loaded in three directions (i.e., for angles
0, 45 and 90). The dynamic stress-strain curves of OCCF under confined conditions are shown
in Fig. 3d. Comparing the dynamic compressive and confined behavior to those obtained under
quasi-static conditions permits to show the responses are close to each other (elastic regime,
plateau and densification) and confirms a low sensibility of the mechanical behavior to the ap-
plied strain rate compared with other cellular materials the compressive properties look good
for structural applications, notably its ability to absorb a large amount of energy under impact
loadings.
To understand the damage mode and the crush mechanisms of the brittle ceramic foams under

impact, an ex-situ compression test was performed on a confined cylindrical sample. The test

3
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Figure 3: Uniaxial compression stress-strain curves: a) static compression behavior without
confinement, b) static compression behavior with lateral confinement, c) Static anisotropic com-
pression behavior with lateral confinement in three loading directions and d) dynamic compres-
sion behavior

was interrupted at different strain levels and scans were taken with a X-rays CT tomograph at
each step. Analysis of the 3D images has enable tracking the mechanisms of deformation dur-
ing the test. They have shown that the non linear deformation of the OCCF are controlled by
the appearance of crushing bands in the sample which lead to the fragmentation of foam into
parts becoming more and more smaller until it has been transformed into powder at the end
of the densification. Figure 4 shows the force-displacement curve registered during the ex-situ
compression test and cross-sectional tomography images at each step.
Triaxial compression tests were performed with a triaxial testing machine ”ASTREE” to char-

acterize the OCCF multiaxial behavior. Iso-displacement compaction pression loading, oe-
dometric compression loading and more complex triaxial compression loading with variable
confining pressure were carried out under quasi-static conditions (5 mm×min−1). In these
tests, the samples inside the compacting device have been oriented along in such way that their
foaming direction was parallel to the vertical axis of the ASTREE machine axis 3. Under
iso-displacement compression loading (i.e., same compression loading rate applied along the
three perpendicular directions), the material exhibits a slightly transversely isotropic behavior
(stress-volumetric strain curves drawn on Fig. 5a). The compressive strength in the rise foam-
ing direction axis 3 is higher than that in perpendicular directions (axis 1 and axis 2 directions).
In another triaxial test the foam sample was compressed by applying the same displacement
rate in the three directions until the first brittle failure was reached and then it was loaded axi-
ally (uniform compression force rate in direction axis 3) while keeping constant the confining
pressure in the perpendicular directions axis 1 and axis 2. These experiments exhibit clearly the
influence of the lateral confinement on the mechanical response of OCCF. Figure 5b shows the
variation of the curves stress-volumetric strain when varying lateral confinement from 5KN to
25KN.

4
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Figure 4: Force versus displacement curve and microstructural change obtained by tomo-
graphic analysis of the OCCF from the ex-situ confined compression test

Experimental data have been used to identify the yield surface of the brittle ceramic foam. The

Figure 5: Triaxial compression tests on OCCF samples: a) response of the material under a
hydrostatic loading, b) Effect of the lateral confining pressure on the response of the material

failure surfaces and it evolution were constructed in mean stress (σm = −1
3
(trσ) )versus devia-

toric stress (σd =
√

3
2
s : s) space for various level of volumetric strain. The obtained behavior

seems to be adjusted by an elliptic yield criterion in the compressive zone of the space σm− σd
defined by :

Φ = σ̂2 − Y 2 =
1

[1 + (α
3
)2]

[σ2
e + α2σ2

m] − Y 2 (1)

This relationship corresponds to the Deshpande Fleck criterion. To account for a good descrip-
tion of the hardening of the material during the densification, the initial Deshpande & Fleck
model has been improved to predict the radial anelastic expansion in the plastic domain (called
MDF model). Where σe is the von Mises effective stress and σm is the hydrostatic stress. The
parametr α defines the shape of the yield surface given by
.

α =
9

2

1 − 2νp

1 + νp
(2)

5
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where νp is the plastic coefficient defined as a function of the plastic volumetric strain.

Figure 6.b shows the evolution of the OCCF yield surfaces fitted by the Modified Desh-
pande & Fleck (MDF) yield surface.
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Figure 6: Identification of the MDF parameters model for the OCCF: a) variation of the plastic
Poisson’s Ratio b) Yield surface in mean stress-deviatoric stress space

3 NUMERICAL SIMULATION

The MDF model has been implemented via an usermat subroutine in the finite element code
LS-DYNA. In order to validate the behavior model and to verify its applicability to simu-
late crushing tests in quasistatic conditions. The crushing test consists to apply an inclined
(15◦) on a cylindrical OCCF part enclosed in a metallic jacket where behavior is described by
the piecewise-linear-plasticity material model. Fig.7a shows the deformation map obtained at
the last step of the loading. For each test the overall force ? overall displacement curve was
recorded. A comparison of the force versus displacement curves from testing and simulation
are shown in Fig.7b. Comparison between the simulation model from the inclined test showed
that the MDF model gives a realistic description of the test.

Figure 7: Finite element simulation of crushing test: a) residual deformation of the structure at
the end of loading and equivalent plastic strain distribution on the OCCF part. b) comparison
of experimental and numerical force-displacement curves from inclined crushing test.

6
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4 CONCLUSIONS

In this work a exhaustive characterization of the brittle ceramic foam (OCCF) has been pre-
sented. A slightly modified Deshpande and Fleck model is identified in which both the slightly
transversely isotropy due to the manufacturing process and slightly time dependence are not
taken into account in this first model. First analysis of the experimental data permitted to iden-
tify an elliptic yield criterion depending on the level of volumetric plastic strain. The constitu-
tive equations have been implemented into LS-Dyna FE code. First numerical results shows a
good agreement compared to the experimental results. Further investigation is required to model
the transversely isotropically behavior of the OCCF foam and the strong tension-compression
assymmetry that is observed for this material.
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ABSTRACT 
 

Combination of thermoforming process of thermoplastic laminates reinforced with continuous 

fibers associated with injection molding of discontinuous reinforced thermoplastic in order to add 

stiffeners or specific functions at precisely defined locations is increasingly used for applications 

which require structural lightweight parts. This technique is well suitable to use in substituting 

metals and thermosetting composite materials by thermoplastics based composites particularly in 

automotive industries allowing to the various advantages which can offer thermoplastics 

composites like: lightness (compared to metals), toughness and recyclability (compared to 

thermosets). 

In this study which is made in the framework of FUI project ARIZONA, complex shaped 

components were fabricated from thermoplastic prepreg combined with injected composite based 

on PA6 matrix. The prepreg lay-up was consolidated as a plate, pre-heated with an IR heating 

system, and put inside the mold. The plate was then thermoformed by closing the mold and over-

molded in one step. 

The objective of this study was to characterize the thermal-mechanical and mechanical properties 

of the laminate, injected and over-molded zones in relation with the processing parameters for 

different environments use (temperature and moisture). Thermal-mechanical properties were 

investigated by the Mechanical Dynamical Analysis (DMA) in range of temperature between -

130°C to 200°C and dynamical frequency was varied from 0.1 to 30 [Hz]. Three-point bending 

and tensile tests were used to investigate the mechanical properties. Micro-tomography was 

realized to investigate in 3D reinforcement architecture and failure scenarii. The results show 

clearly the influence of the moisture absorption on the mechanical properties of each composite. 
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1 INTRODUCTION 

In recent decades, the automotive industry has experienced considerable technological 

development, according to a demand for more and more challenging. Today, due to the 

globalization car manufacturers are innovating every day, in a sense of growing competition in the 

market by introducing vehicles more comfortable, safe, economic and environmentally friendly 

throughout. 

In this way the choice of materials became an important step in the eco-conception, which can 

contribute significantly in environment preservation. Composite materials with organic matrix can 

be good alternative to replacement of classical metallic materials. During the last century, the 

introduction of advanced composite materials in various industries (aerospace, aerospace, 

automotive ...) was a striking success. The strengths of these materials reside in: their lightness, 

their chemical stability and their implementation facilities. 

However, the physical properties of these materials vary depending on several factors: the nature 

of the matrix and the reinforcement, the architecture and the reinforcement rate ... etc. In an 

economic context the use of mid-range materials is preferred in automotive mass production. In 

this context, the thermoplastic matrix based composites reinforced with glass fiber are good 

candidates. Recyclability of thermoplastics is one of their various advantages. In addition, these 

materials are characterized by their low density which gives a considerable lightness in 

comparison to metallic materials. This significant weight saving has a direct impact on the 

surrounding, by the considerable decrease of emission of non-desirable gases such as (CO2). 

One of these materials materials that are used increasingly in automotive field is polyamide-6 

(PA-6), which is a semi crystalline polymer characterized by acceptable mechanical properties, 

good resistance to fatigue, chemicals and hydrocarbons. However, it has poor resistance to water 

and its implementation requires drying [1]. The use of this material as matrix constitutes an ideal 

candidate for the manufacture of thermoplastic composites reinforced with glass fibers for the 

automotive industry. 

However, at thickness and shape equivalent composite materials based on PA-6 reinforced with 

glass fibers are not equivalent to steels in terms of overall rigidity.  

In order to overcome this difficulty, a new technique of composite manufacture has been 

developed; this technique is composite over-molding.  

This study is made in the framework of FUI project ARIZONA, which consists in a new 

methodology of composite manufacturing from thermoplastic prepreg combined with injected 

composite based on PA6 matrix  

The objective of this work is to characterize thermal-mechanical and mechanical properties of 

different zones of the composite part: laminate, injected and over-molded zones in relation with 

the processing parameters and moisture content.  

2 MATERIALS & METHODES 

2.1 Materials 

The materials used in this study were three Polyamide PA6 based composites:  

- Continuous glass fibers reinforced PA6, commercially named Tepex Dynalyte 102 RG 

600(2); the reinforcement of this material is a balanced fabric with 0° and 90° oriented 

made from two plies of 0.5 mm oriented at [0°, 90°] given a total thickness of 1mm.The 

reference of the material in this study is CGFR-PA6. Fiber weight fraction is about 64% 

(cf. fig.1.1). 
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- Injected composite reinforced by discontinuous glass fibers with a nominal length of 

250µm; this material is made with the same grade of PA6 and commercially named 

Durethan BKV 60 characterized by fiber weight fraction of 62% (cf. fig.1.2). The 

reference of the material in this study is DGFR-PA6. 

- Over-molded composite which is a bi-layered composite between continuous and 

discontinuous fiber reinforced composite.  

All materials were supplied by Bond-Laminates GmbH
®
 and Lanxess

®
.  

 

                                    
 

Fig.1. Numerical optical micrograph showing over-molded composite layers. 

   

In the aim to characterize the effect of process manufacturing parameters, a prototype part with a 

complex shape was designed in ARIZONA project. The design was carried out by Mecaplast
®
 

after shape optimization given by LTDS. The mold was realized by Compose
®
. All prototype 

parts were manufactured at the PEP
®
. The prepreg lay-up was consolidated as a plate, pre-heated 

with an IR heating system, and put inside the mold. The plate was then thermoformed by closing 

the mold and over-molded by injecting the DGFR-PA6 (Fig.1.b) in one step. 

Temperature of pre-heating was varied as follow: 250, 270, 285 and 295°C. Mold temperature 

was 110°C. 

All specimens were obtained by water jet cutting from prototypes.             

2.2 Thermomechanical analysis   

Rheological characteristics of materials were performed with the use of DMA50 0.1dB from 

METRAVIB on rectangular (20mm×2mm× thickness mm) specimens in the tension/compression 

mode at controlled alternating strain. The temperature range was -130°C to 200°C with a heating 

rate of 1°C/min and the frequency was varied from 0.1 to 30 Hz. 

2.3 Tree point bending test 

The three point bending loadings were carried out using an INSTRON 4206 electromechanical 

machine with load cells of 100 kN and cross head speed was 2.5 mm/min. The radius of the load 

roller was 5 mm and the distance between supports was 60 mm. Experimental procedure was 

made according to the International standard ISO 14125 at room temperature (T=23±1°C, RH = 

40±5%). CGFR-PA6 samples have the following dimensions: 100 mm long, 25 mm wide and 1 

mm thick. In the case of DGFR-PA6 and over-molded composite the samples dimensions are 100 

mm long, 15 mm wide and 3 mm thick.  

The apparent flexural elastic modulus (Ef) and the ultimate stress (σmax) were the mechanical 

properties evaluated.  

Discontinuous glass 

fibers reinforced PA6 

(DGFR-PA) 

Continuous glass fibers 

reinforced PA6 

(CGFR-PA) 
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Figure (fig.2) shows an example of three point bending curves of DGFR-PA6 composite. The 

linear part corresponds to the elastic behavior and the maximum recorded stress is considered as 

an ultimate flexural stress.  

 
Fig.2. Flexural stress vs flexural strain curve (three bonding test): Discontinuous glass reinforced 

PA6. 

2.4 Computed tomography analysis 

The computed tomography is a non-destructive method based in the 3D X ray scan which 

allows three-dimensional structure information of materials without contact. The micro-

tomograph used is Nanotm
®
 research edition manufactured by General Eclectic inspection 

Technology. It allows analysis of samples size: height from 1 mm to 120 mm, maximum 100 mm 

width and sample acquisition in aqueous medium. The X-ray source is an open tube GE Phoenix 

nano-focus, providing a maximum voltage of 180 kV and a maximum power of 15 W. The 

voltage range operates between 10 and 180 kV. The apparatus detector is a digital detector with 

dimensions 115 mm x 115 mm, with a pixel size of 50 microns x 50 microns (2300 x 2300 matrix 

px). It provides submicron resolution (minimum pixel size of 0.5 microns). However the pixel 

resolution is highly dependent on the specimen size. 
 

 
Fig.3. Micro-tomography device. 

 

The test parameters used in this study are as follows: sample dimensions 15 mm long, 15 mm 

width and 4 mm thick and the beam operated at 80 keV and 120 µA. According to the sample size 

the voxel resolution achieved in this study was 8µm. The result obtained by X-ray tomography 

was a stack of slices in 3 directions which includes about 2400 images. These slices were 

analysed using VG-studio and ImageJ to generate 3D representation of the specimens. 

Detector 
X-ray source 

Specimen 
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3 RESULTS & DISCUSSIONS 

3.1 Materials conditioning 

Effect of moisture content on PA6 based composite on mechanical properties were 

investigated. Specimens were dried for 8 days in stove at 60°C, in the objective to remove all 

residual moisture due to air conditioning and transportation. After surface polishing of sample the 

absorption of water was achieved by immersion in distillated water at room temperature (T = 

23°C ± 2°C). Uptake moisture of specimens was measured by differential weighting using an 

electronic balance of accuracy 10
-5

 g.  Difference between the weight of dried specimens and the 

weight after water immersion was calculated. Supposing that in the composite only the matrix 

PA6 uptakes water, the moisture content M(t) absorbed by each specimen was calculated from its 

initial weight (w0) of dried matrix PA6 and its weight after absorption (wt) as follows: 

 

𝑤0 = 𝑤0𝑐 . (1 − 𝑋𝑓)        (eq.1) 

𝑤𝑡 = 𝑤𝑡𝑐 − 𝑤0𝑐       (eq.2) 

 

Where, (w0c) is the initial weight of the composite, (Xf) is the weight fraction of the fiber (0.64%) 

and (wtc) the weight of conditioned composite at the instant t.  

 

𝑀(𝑡) = 100. (
𝑤𝑡−𝑤0

𝑤0
)     (eq.3) 

 Figure VI.1 shows the weight gain M(t) as a function of the square root of time (t½) during 

ageing in distilled water for the studied composites. Three specimens were studied for each case 

and the presented water uptakes are average values.  

 
Fig.4. Moisture content evolution as a function of time for the three composites CGFR-PA6 1 mm 

thick, CGFR-PA6 2 mm thick and CGFR-PA6 3 mm thick 

 

All composite curves showed similar profiles and one can distinguish the presence of two zones. 

The first one is linear corresponding to a rapid increase of moisture content. The second region 

corresponds to a plateau at which the aged material reaches saturation. In this case, and for all 

studied composites the kinetics of water diffusion follow the one-dimensional Fick’s second law. 

The coefficient of diffusion of water can be calculated from the slope (S) of the linear part of the 

last curves as follows [2]:  

𝐷 =  𝜋 (
ℎ

4𝑀∞
)

2
(𝑆)2     (eq.4) 

By considering the coefficients D and Mm, the moisture content as a function of time M(t) can be 

expressed according to the following equation [3]: 
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𝑀(𝑡)

𝑀∞
= 1 − ∑

8

𝜋²(2𝑛+1)²
exp (−

𝐷(2𝑛+1)2𝜋2𝑡

ℎ2 )∞
𝑛=0     (eq.5) 

 

where 𝑀∞ is the moisture content at saturation, D is the apparent diffusion coefficient, t is the 

aging time and h is the sample thickness.  

 

The apparent diffusion coefficient and the maximum moisture content vary with the nature of 

composite. The continuous glass reinforced PA-6 composites achieved moisture saturation at 

8.7% with an apparent coefficient of water diffusion equal to 7.01 e-7 mm²/s whereas the 

discontinuous glass reinforced PA-6 composite (DGFR-PA6) showed better hygrothermal 

properties since the water diffusivity and the moisture content at saturation were lower than for 

the CGFR-PA6 (𝑀∞ =  7.7% and  D= 5.1 e-7 mm²/s). 

3.2 Dynamical mechanical analysis 

The storage moduli (E’) and the loss factor (tan δ) as a function of the temperature and 

frequency for all composites were measured by DMA.  

In order to determine different relaxation temperatures, CPGR-PA6 composite were oriented at ± 

45° according to the direction of loading. Figure 3 shows an example of the evolution of storage 

modulus (E’) and damping factor (Tan ( as a function of temperature and frequency for CPGR-

PA6. These figures compare two moisture content states: dried and wet at saturation. 

 

 
 

Fig. 5. Evolution of viscoelastic properties of CGFR-PA6 oriented at ±45° measured by DMA as 

versus temperature and frequency : a) Storage modulus E’b) damping factor (tan(δ)).  

(----) dried composite (      ) wet composite. 

 

In the range of temperature studied (-130 – 200 °C) a decrease of storage modulus is observed 

with temperature increase. The structural change occurring in polymeric materials is a result of the 

molecular mobility at different time scales. These motions are known as molecular relaxations. In 

the case of dried composites three clear relaxations can be distinguished:   

 the  main relaxation or relaxation-  corresponding to the drastically decrease of the 

storage modulus and the highest peak of the tan(δ); this relaxation is associated to the 

glass transition, and corresponds to the coordinated motion of relatively long chain 

segments by debonding of low energy bonds (hydrogen bonds) [4]. This relaxation occurs 

approximately at Tα = 80 – 90°C depending on frequency.  

 two sub-Tg relaxations [5-6]: the relaxation-β and relaxation- corresponding to the 

motions of small chain segments or molecular functions. The relaxation-β involves the 

rotation of the amide functions and occurs in the range of -80 / -40°C approximately; the 

Tα Tα 

Tγ Tβ 

Tα’ 

Tβ 

Shift due to the presence of 

water  

a b 
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relaxation- γ corresponds to the vibrational motions of the methylene functions in the 

chains and it occurs at around -130°C.  

After conditioning the composites by water immersion, the DMA results show that the presence 

of water in the PA6 matrix involves a shift of mechanical molecular relaxations to low 

temperature as observed in fig.5. In fact, the Tα decreases from 80°C in dried composite to -10°C  

for wet composite at 1Hz as shown in Figure (fig.6).  

 

 
 

Fig.6. Temperature of main relaxation versus moisture content for different loading frequencies. 

 

In the case of the main relaxation (α) the shift of temperature is due to the fact that the presence of 

water increases the local volume by separating the polymer chains [11, 12]. 

3.3 Three-point bending tests 

Mechanical properties of all composites according to the process conditions and moisture 

content were studied using 3-point bending test. The apparent flexural modulus was taken as a 

main mechanical property discriminant between different composites.  

Figures (fig.7.a & fig.7.b) compare the flexural properties of Continuous GFR-PA6 and 

Discontinuous GFR-PA6 respectively for different processing conditions and sampling zones. 

Prepreg heating was varied from 250 to 295 °C. In all cases the composite failure occurred on the 

tensile side.  

The results show there is not a significant variation in the apparent flexural modulus for the two 

composites whatever the processing conditions. Nevertheless there is a large modulus range for 

discontinuous fiber reinforced composite (7-16 GPa) due to the fiber architecture which varies 

with sampling zone. 

 

           
Fig.7. Evolution of apparent flexural modulus according to the temperature process variation: a) 

CGFR-PA6 and b) DGFR-PA6 (zone1 blue & 2 red). 

a b 
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Figures (Fig.8.a & Fig.8.b) compare the flexural properties of over-molded composites for 

different processing temperatures. Due to the multi-layering feature of these composites, two 

bending configurations were investigated: in the first, continuous glass fibers on tensile side and 

in the second on compressive side. 

Fig.8.a and Fig.8.b show the homogenized apparent flexural modulus and the ultimate flexural 

strength respectively.  

 

           
 

Fig.8. Evolution of flexural properties for the over-molded composite:  a) apparent flexural 

modulus b) Ultimate flexural strength c) and d) illustration of different bending configurations and 

failure features. 

 

The results show that there is no clear tendency concerning the apparent flexural modulus 

according to the temperature processing and bending configuration. This behavior is probably 

associated to the complex fiber architecture according to sampling zone (fig.8.a). The ultimate 

flexural strength evolution according to the different mode of bending is shown in figure (fig.8.b). 

When the CGFR-PA6 is on the tensile side the flexural strength is the highest and quasi-stable 

whatever the processing conditions. For the system with the discontinuous fibers on the tensile 

side the ultimate stress increases with the processing conditions probably due to a better interface 

between the two composites. The computed tomography technique was used to investigate failure 

mode of the over-molded systems. Fig.9 shows an example of 3D reconstitution computed from 

X-ray slices for continuous glass fibers on the tensile side (Fig.9.a) and discontinuous glass fibers 

on the tensile side (Fig.9.b). These figures show typical failure features. In the case when CGFR-

PA6 is on the tensile side the failure growths through the two composites (Fig.9.a). However, in 

the second case (discontinuous fibers on the tensile mode) the failure occurs through the 

discontinuous glass fiber composite and at the interface between the two materials (Fig.9.b).  

               
Fig.9. 3D micro-tomography representation of over molded composite after 3-point bending test: 

a) CGFR-A6 on the tensile side and b) DGFR-A6 on the tensile side. 

CGFR-PA6 

on tensile side 

DGFR-PA6 

on tensile side 

a b 

d 

c 

a b 
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This analysis confirms that the scattering of the results is due to the fiber architecture of the 

injected composite. In fact, the injection flow makes the fiber orientation: in some cases the 

skin/core morphology is dominant with high thickness of skin layer and with fibers oriented 

principally in longitudinal direction, leading to a higher strength. Figure (fig.10) shows two over-

molded composites with the same process parameters but presenting different ultimate flexural 

strength (a : σmax = 190 MPa, b: σmax = 312 MPa).    

 

          
 

Fig.10. Micro-tomography slices showing discontinuous fibers orientation for the same process 

conditions but different sampling zones. 
  

 

 

Effect of moisture on flexural properties 

Figure (fig.11) illustrates the evolution of apparent flexural modulus (fig.11.a) and 

ultimate flexural strength (fig.11.b) as a function of moisture content for all studied composites for 

a given sampling zone. 

The results show a sharp decrease in the flexural modulus as well as in the ultimate flexural 

strength. The continuous glass fibres reinforced PA6 observes a decrease of 50% in apparent 

flexural modulus and the ultimate flexural strength for the moisture saturation state. At 5% of 

moisture content the decrease of flexural modulus is about 50% and the flexural strength was 

reduced of about 36%. 

 

 

       
 

Fig.11. Evolution of flexural properties according to the moisture content for all composites: a) 

Apparent flexural modulus and b) ultimate flexural stress. 

 

As shown previously with DMA, the absorbed water decreases the main relaxation of PA6 due to 

the plasticizing action of water molecules. This phenomenon leads to a drop of the modulus of the 

matrix at room temperature, and therefore to a decrease of the composite one (mixture law). 

Moreover, the increase in  molecular mobility of the wet matrix reduces the yield stress and 

increases the ductility and elongation at break of the composite.  

Skin layer thickness Skin layer thickness a b 

a b 
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4 CONCLUDING REMARKS 

In this study the thermomechanical and mechanical properties of PA6 composites was 

investigated. This work demonstrates that the conditioning history and environment conditions are 

important parameters to be taken into account in design of structural part composites based on 

PA6. The PA6 matrix is very sensitive to humidity; the sorption of water can decrease drastically 

the thermal and mechanical properties of glass fiber reinforced PA6 composites. The over-

molding of prepreg composite can be a solution to enhance the rigidity and therefore the 

mechanical properties of composite parts by a local addition of discontinuous glass fiber 

reinforced composite.  
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ABSTRACT 

 
This work is dedicated to the Weak Trefftz Discontinuous Methods, an extension of the 
Variational Theory of Complex Rays (VTCR), for the resolution of frequency vibrations of 
composite structures. This Weak Trefftz Discontinuous Methods allows one to build easily hybrid 
finite element / Trefftz strategies. Numerical illustrations are presented.   
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1 INTRODUCTION 

The use of numerical simulation techniques has become an indispensable part of the industrial 
design process of innovative constructions for vibration performances. The Galerkin Finite 
Element Method (FEM) [1] is a well-established tool, which is commonly used for the analysis of 
vibration problems. However, as it uses continuous, piecewise polynomial shape functions, it 
often leads to huge numerical model. As a consequence, in practice, its use is restricted to low-
frequency range applications. Trefftz methods [2] have been proposed as a means to bypass this 
limitation. They differ from the FEM in the expansion of the field variables, as they use shape 
functions that are exact solutions of the governing differential equations. Compared to the FEM, 
Trefftz methods often lead to a considerable reduction in model size and computational effort. 
Some examples of such methods are: a special version of the partition of unity method [3], the 
ultra weak variational method [4], the plane wave discontinuous Galerkin method [5], the least-
squares method [6], the discontinuous enrichment method [7], the element-free Galerkin method 
[8], the wave boundary element method [9] and the wave-based method [10]. The Variational 
Theory of Complex Rays (VTCR), first introduced in [11] for steady-state vibration problems and 
in [12] for 3-D acoustics problems, also belongs to that category. The main differences between 
these methods lie essentially in the treatment of the transmission conditions at the boundaries of 
the elements or substructures. 

The VTCR uses a specific weak formulation of the problem, which enables the approximations 
within the substructures (the shape functions that verify the governing equations) to be a priori 
independent of one another. Thus, any type of shape function can be used within a given 
substructure provided it satisfies the governing equation, thus giving the approach great flexibility. 
In this work, we introduce extensions of the classical VTCR formulation: the constraint, which 
imposes the verification of the governing equation, is weakened. This leads to a new numerical 
method, which can be called the weak Trefftz discontinuous Galerkin method. These extensions 
allow one to easily couple different types of numerical models and then get hybrid models: the 
FEM and the classic VTCR models used together, for example. As a consequence, they lead to 
new approaches to the resolution of engineering problems where composite structures have to be 
faced.  

2 DEVELOPMENT OF HYBRID METHODS 

Our hybrid method will be presented on a Helmholtz vibration problem. Then, consider a standard 
problem defined on a domain Ω  with boundaries ∂Ω = ∂1Ω∪∂2Ω  (see Figure 1): find 
u∈ H1(Ω)  such that  

(1+ iη)Δu+ k2u+ rd = 0 over Ω

u = ud over ∂1Ω

(1+ iη)∂nu+ hiku = gd over ∂2Ω

$

%
&&

'
&
&

 

where ∂nu = grad u.n , (n being the outward normal). k is the wave number; h is a constant related 
to the vibration impedance; rd  and gd  are prescribed sources. The damping coefficient η  is 
positive. The data are supposed to be sufficiently regular to have a unique solution.  
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Let us introduced the VTCR variational formulation for this problem. To do this, the domain Ω  is 
divided into subdomains ΩE . The interface between two subdomains E and E’ is denoted ΓEE ' . 
The VTCR is a Trefftz approach which uses the affine space U = u / u∈UE onΩE{ }  with  

UE = uE / uE ∈VE ⊂ H1(ΩE );(1+ iη)ΔuE + k
2uE + rd = 0 onΩE{ }  

 

The vector spaces (with rd = 0 ) associated with U  and UE  are denoted U0  and UE,0 . We also 
denote u{ }EE ' = (uE +uE ' )ΓEE '  and u[ ]EE ' = (uE −uE ' )ΓEE ' . Denoting qu = (1+ iη)grad u , the VTCR 
formulation can be written: find u∈U  such that 

Re −ik ∫ ΓEE '
1
2
qu.n{ }EE ' v{ }

EE '
−
1
2
qv.n$
%

&
'EE '

u[ ]EE '
(

)
*

+

,
-dS

E,E '
∑
(

)
**

(

)
**

− qv.n u−ud( )dS
ΓEE∩∂1Ω

∫
E
∑

+
1
2
(−qv.n(u+ (qu.n− gd ) / (hik))+ v(qu.n+ hiku− gd ))dS

ΓEE∩∂2Ω

∫
E
∑

+

,
--

+

,
-
-

= 0 ∀v ∈U0

 

where the over line represents the complex conjugate part, and “Re” the real part. It is proven that 
this variational formulation is equivalent to the reference problem. All that has to be done to get 
an approximation is to replace UE  by the finite dimension subspace UE

h  in the variational 
formulation, for example spanned by NE  propagative waves eik (θ ).x  regularly reparted on the 
θ −polar 0;2π[ [  range for 2-D examples. 

 

 
Figure 1: Left: definition of the computational domain. Middle: definition of the subdomains. 

Right: coupling of the FEM and VTCR descriptions for hybrid models. 

 
However, one constraint with the VTCR is the need for verifying the governing equation (also 
called the Trefftz constraint): u∈U . As a consequence, FEM shape functions can not be used 
directly. Then, in order to develop hybrid methods, which mix VTCR and FEM approximations, 
one has to weaken this constraint (then leading to the definition of weak Trefftz methods). To do 
this, it is necessary to modify the variational formulation. The new variational formulation is now: 
find u∈U  (with now no constraint on U ) such that: 
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Re −ik ∫ ΓEE '
1
2
qu.n{ }EE ' v{ }

EE '
−
1
2
qv.n$
%

&
'EE '

u[ ]EE '
(

)
*

+

,
-dS

E,E '
∑
(

)
**

(

)
**

− qv.n u−ud( )dS
ΓEE∩∂1Ω

∫
E
∑

+
1
2
(−qv.n(u+ (qu.n− gd ) / (hik))+ v(qu.n+ hiku− gd ))dS

ΓEE∩∂2Ω

∫
E
∑

+ (divqu + k
2u+ rd )vdΩ

ΩE

∫
E
∑

+

,
--

+

,
-
-= 0 ∀v ∈U0

 

As one can see, the difference between this formulation and the last one is just the add of a new 
term which weaken the governing equation. Again, it can be demonstrated that this formulation is 
equivalent to the reference problem. As no constraint is needed for the definition of the space U , 
FEM approximation can be used anywhere it is needed. We can also mix the approximations by 
using the VTCR approximation in a partition Ω1  and the FEM approximation in another partition 
Ω2  (see Figure 1). As a consequence, a great flexibility is provided by such an approach, 
especially on composite structures, where VTCR or FEM can be used (see [13] for the VTCR). 

 

3 NUMERICAL ILLUSTRATION 

We here consider the example described in Figure 2 for the illustration of hybrid methods. The 
problem is considered to be homogeneous, and restricted to a 2-D L-curve shape domain. The 
wave numbers of the fluids a and b are ka = 6.5m

−1  and kb = 29.4m
−1 . The damping coefficients 

are ηa =ηb = 0.001 . The boundary conditions are Robin condition with h = 0.001 and 
gda = 0 or 1m

−1 . 

 

 
Figure 2: Definition of the computational domain for the illustration example used in Section 3. 
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The selected subdomaining for computing the problem can be seen in Figure 3. The FEM 
approximation has been used in Ω1 , where the wavelength is the smallest. Its mesh uses 10 
elements along the x-axis and 40 elements along the y-axis, leading to a mesh with 451 DOFs. 
The VTCR approximation has been used in the subdomains ΩE with E ∈ 2..13{ } . In each of 
these subdomains, the number NE  of the regularly oriented used rays satisfies 
NE = 2.k.diam(ΩE )[ ]  where [�] stands for the integer part, k  stands for the wavenumber and 
diam(ΩE )  stands for the diameter of ΩE . With such a choice, we are sure that the VTCR 
subdomains contains enough DOFs to get a good solution (see the heuristic criterion in [12]). The 
corresponding result can be seen on Figure 3. One can see that, globally, the solution looks like 
the FEM reference solution visible in Figure 3, and computed with a very refined mesh. Indeed, 
almost all the vibration peaks are located at the right location and have the right amplitude. Then, 
this example validates the proposed approach and shows that the hybrid method can solve this 
very complex numerical example, which mixes different kind of approximation with different 
kind of physics. 

 

 
Figure 3 Left: selected subdomaining and modeling for computing the problem of Section 3, 

defined in Figure 2. Middle: FEM reference solution. Right: numerical result obtained with the 
proposed hybrid approach. 

 
 

4 CONCLUSION 

In the VTCR proposed in [11], [12] and [13], the solution of a vibrational problem is tough in an 
approximated space spanned by exact solutions of the governing equation (i.e. propagative 
waves). Their continuities along the interface between the subdomains are ensured thanks to a 
dedicated variational formulation. Here, this variational formulation is extended in such a way that 
any kind of approximation can be used: exact solutions of the governing equation, or not. Then, 
hybrid approximation mixing VTCR and FEM approximation can be used. This has been 
illustrated on an example, which mixes two types of fluid. Waves are used to approximate the 
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vibrational response of the fluid which contains the smallest wavelength. Polynomial FEM shape 
functions are used to approximate the response the fluid which contains the largest wavelength. 
As a consequence, this work is dedicated to the definition of a new generation of computational 
strategy, able to easily mix different kind of approximations, which is useful for the prediction of 
the vibrational performances of composite structures. 
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Abstract 
The presentation will review several examples of the effects of the 
manufacturing process and of the means to incorporate them, directly or 
indirectly, in the simulation of the shock or crash events. The use of the virtual 
material characterization is a key ingredient in addressing these issues (effects 
of manufacturing and new textile architectures) and it will be presented. 
 

1. Introduction 
It is generally felt that the numerical simulation of composite materials has not 
reached the required level to fully support the long-time promised explosion of 
the use of composite materials. One of the reasons is that the effects of the 
manufacturing and assembly processes are not taken into account in the 
assessment of the mechanical performance of the composite structures 
(statics, strength and crash). The manufacturing effects include the fiber 
reorientation, the thickness variations, the local fiber content variations, the 
fiber waviness, the micro and macro porosities, the degree of cure and of 
crystallization, the degree of intimate contact, the tows sections deformations, 
etc. Another reason is the lack of modelling tools for the ever increasing textile 
architectures put on the market. Because of these large domains of incomplete 
control of the knowledge and technology, the industry relies on large safety 
margins, at best involving statistical tools, that lead to add plies and therefore 
mass, hindering the full fruition of the lightness of the composite materials. 
 

2. Effects of preforming onto dry reinforcement impregnation 
In this section, one will start by reporting about the effects of the preforming 
onto the reinforcement impregnation. 

a. Example of the impregnation of a hemisphere. 
This example is one of the first example reported, it traces back to the 2002 
german SAMPE (1) and is due to a team of the InstitutfürVerbundwerkstoffe at 
Kaiserlautern, Germany. The figure 1 shows the RTM (Resin Transfer Molding) 
impregnation of a dry fabric placed in an hemispherical mold using a pole 
injection and the finite element simulation based on the Darcy equation using a 
uniform permeability (one can see a filling time contour plot showing a circular 
radial flow front evolution). One reminds that the Darcy equation relates the 
flow front velocity (V) through a porous medium to the pressure (P) gradient 
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using the resin viscosity () and the preform permeability ([k]) material 
properties: 

V= [k]/ .grad (P) 
One can observe a clear discrepancy between the experimental results and the 
numerical simulation results. 

 
 

Figure 1: RTM injection of an hemisphere: experiment and simulation 
 
Actually, the permeability is not a number but a tensor and one must use the 
permeabilities of the warp and of the weft direction. But this is not sufficient to 
obtain a correct simulation. During the preforming of the dry preform, there is 
a reorientation of the fibers that happens and significant shearing up to nearly 
40° can be observed over the preform as can be seen on the figure 2. 
 

 
 
 
 

 

 
Figure 2: Experimental measurements of the shearing angle along two parallels. 
 
Indeed, using a permeability field varying with the shearing angles and using 
the contour map of the shearing using a finite element simulation (PAM-
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FORM), IVW was able to get a good correlation between the experiment and 
the simulation – see figure 3. 
 

 

 

Figure 3: Comparison of the injection experiment and of the simulation based 
on actual shearing and associated permeability. 
 
These phenomena are now well understood and can be taken into account in 
commercial software. The description of the fiber reinforcement reorientation 
may come from geometric but also directly from the machine creating the 
preform in case of fiber placement (AFP process, AFP standing for Automatic 
Fiber Placement) or braiding machines. 
Note that additional material data are needed to be able to run such an 
injection simulation, namely the permeability as a function of the shearing 
angle of the woven preform. 

b. Volume fiber content (Vf) variations around a radius 
The permeability is obviously strongly dependent on the fiber volume content: 
one can refer for example to one of the first model: the Kozeny Carman model 
(2). Looking at a typical section of the fiber distribution in a radius, one can see 
again a preforming effect onto the reinforcement impregnation. 

 
Figure 4: Section of a laminate around a radius showing the higher Vf close to 
the inner radius and the free space left for an easy resin flow close to the outer 
radius. 
 
In this section, we only focused on the impregnation consequences of the dry 
preform. One will see in section 6 that actually the mechanical properties are 
modified according to the flow velocity and therefore according to the 
preforming. 
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3. Effects of textile processing onto subsequent forming steps 
In this section, one will cover some additional effects of the textile technology 
used in the manufacturing. 

a. Example of deviations of the fiber paths in the braiding process 
For the braiding process, there is no possible direct transfer of machine 
commands to a full description of the fiber paths to be used in the mechanical 
simulation tools. One option is the use of analytical formulae. The figure 5 
shows a comparison of a specific yarn path using analytical analysis and FE 
simulation (3). It shows that a full FE simulation is needed if one needs accurate 
fiber paths. 
 

 

 

 
 

Figure 5: LHS: Manufactured braided preform and a comparison of analytical 
and FE prediction of a particular yarn path. RHS: view of a braiding simulation. 
 
The last remark can extended to AFP and ATL (Automatic Tape Laying) because 
when the curvature of the part needs steering, gaps and overlay appear in the 
preform that departs from the targeted ideal design definition of the 
reinforcement. 

b. Example of tows section modifications in the braiding process 
Up to now, we have only considered the fiber paths themselves, but the textile 
technology also modifies the tows sections during the processing and creation 
of the fabrics or the braid. One can see on figure 6 a micrograph of a braided 
preform; to really account for this state of yarns deformations, a FE simulation 
is necessary. 
This kind of result needs to be appreciated with in mind the way this kind of 
phenomena is handled in the industry and in the academic world. Usually, a 
priori distribution of fibers is assumed or mathematical tools are used to 
provide some fiber distribution or these variations are accounted for through 
stochastic methods. 
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Figure 6: LHS: Micrograph of a braided preform. RHS: section of the associated 
braiding simulation. 
 
Note that we do not pretend that it is possible to ask to the simulation to 
provide a comprehensive description of the reinforcement and of the 
composite itselfin a fully deterministic way. But we claim that manufacturing 
simulation should be used in order to provide a first realistic description of the 
composite part and that one should start tackling the various variabilities 
involved in a composite part earlier in the part manufacturing. That is the 
variability should be addressed at the yarn level and at the manufacturing 
process parameters variations level and not at design stage. 
 

4. Effects of preforming onto mechanical performance 
In this section, one will report some examples of fiber reorientation onto the 
mechanical performance. 

a. Effect of fiber reorientation on first ply failure analysis 
The work reported here was performed in the European FP7 FALCOM project. 
A four points bending test of an aeronautical frame was performed by EADS/M 
at Ottobrunn, Germany. Simulations were conducted using the design 
definition of the fiber orientations and using the fiber orientations coming from 
a draping simulation. Using commercial software based on idealized fiber 
orientation and a classical failure criterion like the Tsai-Hill criterion, one 
calculates a failure at the axis of symmetry. One can see a better prediction of 
the failure location on the figure 8. This improved result is obtained using the 
fiber orientation coming from a preliminary simulation of the draping operation 
(4). 
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Figure 8: View of the test setting; view of the offset of the failure w.r.t. the (red) 
axis of symmetry; Tsai-Hill contour plot based on simulated fiber orientation. 
 

b. Effect of fiber reorientation on progressive damage simulation 
The effects of the manufacturing process on catastrophic failure seen in the last 
section are the result of the evolution of damage in the composite part. One 
reports here the effects of the manufacturing process onto the progressive 
damage evolution itself. The mathematical model of the damage used in this 
example is the popular Ladevéze model(5). In the works of L. Greve and A.K. 
Pickett (6), the material characterization tests usually run to be able to simulate 
with the Ladevéze model are done not only for the undeformed coupon from 
the roll but also for pre-sheared sample, that is at the four following pre-
shearing values, +10°, - 10°, +170 and -17°.  The characterization is used to 
punch various deformable dics with various pre-shearing values and the results 
are seen on the figure 9 extracted from (6). 
Note again that additional material testing is required if one wants to simulate 
the actual composite discs. 

 
Figure 9: Results of progressive damage analysis on two punched pre-sheared 
composite discs. 
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5. Effects of textile processing onto mechanical performance 

Having the objective to use the manufacturing results in mechanical 
performance simulation, generating the manufacturing process simulation 
results is not enough to improve the mechanical performance assessment. In 
this section, one would like to stress the need for having mechanical simulation 
software that can actually use these simulation results. 
In the following example an additional ingredient is introduced in the modeling. 
The part studied is a composite mudguard (7). But, at the difference of the 
approach used for the aeronautical frame described in section 3, the stiffness 
modification is not restricted to a modification of the fiber direction and 
rotations of the stiffness matrices. Here, all the elastic stiffness coefficients are 
calculated again using TEXCOMP (8). That enables to take into account the 
intra-tow deformations resulting from the shearing and from the interactions 
between the warp fibers and the weft fibers. 
 

 
Figure 10: Mechanical analysis integrating local stiffness variations accounting 
for local tow deformations 
 

6. Effects of RTM process conditions onto mechanical performance 
As announced in the section 2, one reports here a few information about the 
effects of the impregnation onto the final content of porosities and therefore 
onto the final mechanical part performance. E. Ruiz is one of the first author to 
report a comprehensive work covering both the prediction of micro and macro-
porosities (that is intra and inter-yarn porosities) occurring in the RTM 
manufacturing of composite parts and also the effects of the porosities onto 
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the stiffness and strength – see the figure 10 from (9). A main outcome of this 
work is that there is an optimal flow velocity that minimizes the micro-voids 
(due to too high flow front velocity) and the macro-voids (due to too low flow 
front velocity). This is a useful observation for process engineers in order to 
optimize the process. This information can also be used by designers: assuming 
the knowledge of the stiffness and strength as a function of micro/macro-voids, 
the designer can run simulations using a contour of mechanical properties 
calculated from the map of porosities obtained at the end of the RTM process 
simulation. 

  
Figure 11: Variations of young modulus and strength with macro/micro-
porosities(9) 
 

7. Virtual Material Characterization 
As noticed in all the examples afore mentioned, accurate mechanical behavior 
of a composite structure requires not only the description from the 
manufactured part but also an enriched material characterization. Not only the 
standard mechanical properties (elastic stiffness, strength, strain energy 
release rate, etc.) obtained by testing the purchased material must be available 
for the mechanical simulations but the properties must also be available as a 
function of the parameters modified during the various stages of the 
manufacturing process. The list includes the fiber reorientation, the thickness 
variations, the local fiber content variations, the fiber waviness, the micro and 
macro porosities, the degree of cure and of crystallization, the degree of 
intimate contact, the tows sections deformations, etc. 
This requirement represents a significant additional burden to the simulation 
activity. In this section one report about active explorations of the virtual 
material characterization that could provide an alternative to expensive 
physical coupon testing. 
The permeability prediction has been shown to be an effective technique as 
demonstrated for example by the Nottingham University works. The idea is 
simply to start from a representative unit cell of the studied reinforcement, to 
inject (numerically) resin from one side (using a CFD software like the FPM 
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method) and using the Darcy equation one can recover the permeability from 
the pressure drop – see (10) for more details. 
Drapeability prediction in order to simulate the draping operation has been 
tackled through themeso-mechanical modeling of individual tows and stitching 
yarns in (11). 
The prediction of elastic properties is now done more or less on a regular basis, 
at least in academic world. The prediction of damage properties requires more 
attention. A recent work shows significant progress in this direction[??]. The 
figure 11 shows the simulation process used in this work: filament winding 
simulation, extraction of mechanical properties and final use in a crash tube 
simulation. 
 

 

 

 

 

 
Figure 11: Material prediction and crash simulation: a global approach (12) 
 

8. Conclusion and challenges for E2E composites simulation 
This paper has presented an overview of current attempts to develop 
simulation tools contributing to the accounting of manufacturing effects in 
the mechanical design ofcomposite parts. Additional tools will be necessary 
in order to make this complete (end-to-end or E2E) simulation of composite 
parts a routine activity. We can mention for example tools to map results 
from one simulation into a different simulation tool using different 
numerical techniques and physics. The related statistic and reliability 
analysis tools will need integrating the variability of the material and of the 
manufacturing process. The composite part development process will 
iterate over a large loop ranging from material design, process design and 
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part design. The resulting robustness and full control gained over the 
product development process will enable to decrease the safety margins 
and eventually really take advantage of the benefits of composite materials. 
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ABSTRACT 

 

This paper investigates the vibro-acoustic response of stiffened and unstiffened laminate 

composite structures and sandwich structures based on a Statistical Energy Analysis (SEA) 

approach. SEA is a modeling procedure which uses energy flow relationships for the theoretical 

estimation of the dynamic response as well as the sound transmission through structures in 

resonant motion. The accuracy of SEA is related to the accurate estimates of its parameters 

(modal density, Damping Loss Factor (DLF) and the Coupling Loss Factor (CLF)). Wave and 

modal based approaches are developed to predict the SEA parameters for both stiffened and 

unstiffened composite panels and sandwich panels. For composite structures each layer is 

assumed to be a thick laminate with orthotropic orientation. Moreover, rotational inertia and 

transversal shearing, membrane and bending deformations are accounted for. First order shear 

deformation theory is used. The developed approach handles symmetrical and asymmetrical 

constructions of an unlimited number of transversal incompressible layers. Moreover, for the case 

of a ribbed panel with thick composite skin, the effect of variable spacing of the ribs is accounted 

for. The sandwich model uses a discrete displacement field for each layer and allows for out-of-

plane displacements and shearing rotations. The accuracy of this modeling approach is 

confirmed through comparison to measured test data and alternate validated theoretical results. 

The advantages of the new developed models compared to the classical models are also 

investigated. Representative examples of aircraft interior noise predictions for typical load cases 

are shown and the use of SEA models as a tool for guiding construction of multi-layer lightweight 

structures to meet acoustic performance and weight targets and optimize designs are presented.  

Conclusions about the overall applications and improvements offered by these approaches, 

current limitations, and future work to extend and improve these approaches are given. 
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1 INTRODUCTION 

Nowadays there is an increasing use of sandwich and laminate composite panels due to 

their light weight and higher stiffness. The ability to accurately predict the dynamic structural 

properties of such structures is essential in order to accurately predict the corresponding interior 

noise and structural vibration levels for many industrial applications including aerospace vehicles. 

Unlike the vibro-acoustic response of simple continuous structures, a detailed analysis of wave 

motions for stiffened plates is often difficult to achieve because of the complexity of the structural 

configuration and the uncertainty of the boundary conditions. Most of the previous research 

focused on the modelling of ribbed panels with regular spacing between stiffeners [1]-[2]. In 

practice ribbed panel construction is always accompanied with non-uniform, statistically variable 

spacing between stiffeners even when uniform spacing is intended. Little previous research was 

developed to account for this stiffener spacing uncertainty. 

The Statistical Energy Analysis (SEA) technique is commonly used at higher frequencies 

to predict airborne and structure borne noise transmission for many industrial applications. Being 

able to properly characterize complex ribbed and unribbed multi-layer lightweight structures and 

derive the modal density and coupling loss factors (CLF) is essential. A large number of 

researchers have studied these parameters for single-layer structures but only a limited amount of 

work has been carried out to determine these parameters for sandwich panel and ribbed or 

unribbed panels with thick composite skin. For instance, Zhou and Crocker [3] analysed the sound 

transmission of sandwich panels where the classical sandwich formulation is used to predict the 

modal density and the coupling loss factor is measured. Other researchers modelled the laminate 

composite as a two-dimensional problem wherein the displacement field in each lamina is based 

on Kirchhoff’s hypothesis [4]-[6]. Moreover, most of the existing models neglect the shear and 

the inplane contributions as well as the rotational inertia that strongly influence the high-

frequency behavior of these structures.  More accurate results are provided by a first-order shear 

deformation theory [7]-[9] or other higher order shear deformation theories [10]. The first-order 

shear deformation theory based on Reissner–Mindlin-type assumptions takes the transverse shear 

deformation into account. However, it requires shear correction factors to compensate for errors 

resulting from the approximation of the shear-strain distribution. For instance, Ghinet and Atalla 

[11]-[12] used Reissner–Mindlin-type assumptions in a Transfer Matrix Method (TMM) context. 

For ribbed panels, the stiffener spacing uncertainty effect was always ignored in the modelling of 

these structures. Only a few researchers studied this effect; for instance, Mejdi and Atalla [13] 

developed a semi analytical model to analyses ribbed panels with evenly and unevenly stiffened 

composite laminate flat structure. Langley [14] derived the modal density of periodically stiffened 

beam and plate structures in terms of phase constants, which were associated with propagating 

wave motion. In his analysis he assumes that the modal density is not affected by the imperfection 

in the attachment.  

In this paper, a wave and modal based approach are developed to model both sandwich 

and ribbed or unribbed panels with thick composite skins in an SEA context. The effect of shear 

deformation and the in-plane / bending coupling effects are employed to improve the vibro-

acoustic response prediction of multilayer structures. Moreover, for ribbed panels, the stiffeners 

spacing uncertainty effect is accounted for. SEA prediction using classical models are compared 

to the presented models using thick plate theory. The latter are found more suitable for both low- 

and high- frequency analysis. The stiffeners spacing uncertainty has an important effect on the 

dynamic response of ribbed panels. 

2 THEORY 

2.1 Thick composite model 
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The laminate panels considered here have a symmetric or an asymmetric configuration. 

The panel is assumed infinite. For a point M belonging to the laminated composite shell, the 

displacement field is defined by the Mindlin type assumption where both bending and transverse 

shear effects are considered:  
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,U V and W are the in-plane and the transversal displacements and 
x ,

y  are the 

rotational displacements in x and y directions, respectively and z  is the layer’s point position from 

lamina mid-plane. Geometrically, the shell is considered to be of infinite extent in the axial (x) 

direction and thus the origin for both x and y is arbitrary. Nevertheless, the origin for the z axis is 

defined on a reference surface passing through the middle thickness of the shell. 

The dynamic equilibrium relations of the unstiffened in-vacuum panel are given by 

integrating the stress continuity relation through the thickness of the lamina [13]:  
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where , ,x y xyN N N are the in plane forces and , ,x y xyM M M  are the bending moments and ,x yQ Q  are 

the shearing forces. sm  and zI , 2zI are the total mass per unit area and the total rotational inertia 

terms, respectively. Using the stress displacement relation and integrating the stress through the 

thickness, the constitutive relation between the forces and the displacements can be written as: 
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where Aij, Bij and Dij  are the extensional, extensional-bending and bending stiffness. The equations 

of motion can be obtained by introducing (3) into (2) and assuming a solution in the following 

form: 

     , , , , exp
T

x y x ye U V W jk jk j t               (3) 

where xk  and 
yk are the components of the structural wave number, 

pk  is defined as a function of 

the heading angle : 
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,                                                       (4) 

Using Eqs. (2)-(4), we obtain the following compact matrix equation: 
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          2 2

3 2 1 0p pk A ik A A M e    ,           (5) 

For a wave-based approach, one can obtain the eigen solutions from Eq (6). The three 

smallest real positive solutions correspond to the bending, extension and shearing wavenumbers. 

The extensional and bending matrices can be obtained from the eigen solution and all the SEA 

parameters: CLF, DLF and modal density, can be obtained. 

2.2 Ribbed panel with thick composite skin and periodic and variable stiffener spacing 

2.2.1 Periodic ribbed panels 

For ribbed panel, the stiffened effect could be accounted for by correcting the mass and 

stiffeners in the wavenumber domain. Indeed, Bremner  [16] has explained the distinct behaviours 

in terms of wavenumbers of a flat ribbed plate of width  Lx and height Ly stiffened with ribs and 

frames with spacing  Sx  and  Sy between the ribs and frames. As the modal half-wavelength in the 

x and y directions goes below the Lx and  Ly  dimensions, the plate behaviour shifts from global 

behaviour, over the plate area  (Lx, Ly), to periodic behaviour over areas delimited by (Sx, Ly),  (Lx, 

Sy).  Finally, when the modal half-wavelength goes below the rib and frame spacing Sx and Sy, the 

modal behaviour is determined by the behaviour of a flat uniform subpanel delimited by the ribs 

and frames (local behaviour). Those four conditions represent the four models required when fully 

describing the modal behaviour of a stiffened plate over a large frequency band. When a particular 

condition is met for periodic modes behaviour, the number of modes should be multiplied by the 

multiplicity factor 𝜇.  

For example, the mass and stiffness correction in region 1 where the bending wave 

numbers 
m xk S  and n yk S  and both x and y ribs smeared over surface (Lx  , Ly) with a 

group of multiplicity 1p  , are given by: 
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  (7) 

Where m denote the mass, E, G are the stiffener’s young and shear modulus respectively, I 

and A are the stiffener’s moment of intertie and cross section respectively. 

Once the mass and stiffness are corrected, the modal frequency can be obtained by 

considering a simply-supported boundary condition and by solving Eq (6) for each mode order. 

Indeed, for a simply-supported boundary condition, the bending wavenumber is given by  

   mn x yk m L n L    where m and n are the modal orders. Eq (6) can be rewritten as: 

         2 2

3 2 1 0mn mn mnk A ik A A M e      (8) 

To account for any curvature and tension effects that may be acting on the structure, the 

modal frequency can be corrected as: 
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_mn cor mn C T         (9) 

where the terms C and T are the curvature and tension correction factors. 

By solving Eq (8) for the modal frequency, the mode list can be obtained by evaluating the 

modal frequency regarding each bandwidth and in this manner all the SEA parameters can be 

obtained. 

2.2.2  Variable spacing effect 

To account for the uncertainties in the ribs spacing, a statistical process can be employed 

by considering an ensemble of i spacing varying by a certain percentage over the nominal rib 

spacing values. It is assumed that the spacing uncertainty can be computed as though it has a 

normal distribution as shown in Figure 1:  

 
Figure 1: Graph of normal probability density function. 

2-
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where f is the probability density function (pdf). The modal energy corresponding to each spacing 

could be computed using the power balance equation: 
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𝜂(𝑆𝑥
𝑖 , 𝑆𝑦

𝑖 )] is the SEA coupling matrix corresponding to a given spacing 𝑆𝑥
𝑖 , 𝑆𝑦

𝑖  . 𝐸𝑖  and 𝜋𝑖 are the 

corresponding modal energy and injected power respectively.  

The average estimate of all the SEA parameters and vibro-acoustic responses can be 

obtained using the following formulation: 
7
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                                (12) 

𝑉𝑖 is an SEA parameter such as the modal density, CLF, DLF or injected power and f 
i
 is the pdf  

given by 𝑓𝑖 =
1

√2𝜋
𝑒−𝑧𝑖

2 2⁄  for a given  𝑧𝑖 = [−3 − 2 − 1 0 1 2 3] as mentioned in Eq (10). 

2.3 Sandwich model with composite skin 

For a sandwich model, a Mindlin-type assumption is used to describe the displacement 

field of the core [12]. The skins are assumed to be thinner than the core and display bending 

behaviour. Their displacement field is built using the Love-Kirchhoff’s assumptions but is 

corrected to account for the rotational influence of the transversal shearing in the core [12].  
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    (13) 

where rkx and rky are the rotational coefficients. 
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Perfect bonding of the layers is assumed, so that the displacement field remains 

continuous throughout the interface between two consecutive layers.  

The relations of stresses’ dynamic equilibrium are written for each layer separately in 

order to develop the continuity of stress relations at the interface between the layers. These 

relationships are next integrated through the layer’s thickness and the dynamic equilibrium 

relations along the x and y directions are obtained. For the top skin – core interface represented by 

the superscript 
1
, the relations of continuity are written as follows:  
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           (14) 

The panel’s dynamic behaviour is governed by the dynamic equilibrium relations of the 

forces and moments along the x, y and z directions. The sandwich-type panel assumptions are 

considered; the membrane forces N
x
, N

y 
and N

xy 
and the bending moments M

x
, M

y 
and M

xy 
are 

computed through the thickness of the skins while the transversal shearing forces Q
x 

and Q
y 

are 

expressed through the core’s thickness. Considering the stresses’ continuity relations along the x, 

y, and z directions as well as the panel’s incompressibility along the z direction and integrating 

through the panel thickness, the following equilibrium relations can be written:  
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                            (15) 

The shearing forces Q
x 

and Q
y 

can be replaced in the last two equations to express the 

following relationship of motion: 

 
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2 22

2 2

2 2 2
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     

           (16) 

The stresses’ continuity relations compose the system of dynamic equilibrium equations 

of sandwich composite panels. This system can be expressed in a matrix form using the 

constitutive equation Eq (4) in the same solution form as in Eq (6): 

           4 3 3 0k A jk B k C jk D E e               (17) 

As for the thick composite model, the eigenvalue problem can be solved and sorted out to 

find the three smallest real positive solutions. All the SEA parameters (CLF, DLF and modal 

density) can then be easily computed. 

3 NUMERICAL RESULTS 

Various numerical examples are given and validated by the VA One commercial software 

code. Both ribbed and unribbed panels with thick composite and uniform skin are analyzed. The 

effect of variable spacing between stiffeners reinforcing thick composite skin is also analysed.  

The accuracy of the modeling approach for sandwich panels in which the skin layers are made of 

composite materials is also analysed. In the following examples, both the wave and modal 

approach based predictions using the different models are examined by comparing various vibro-
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acoustic indicators with experimental and existing models. Acoustic behavior under airborne and 

structure borne excitation is investigated. VA One capabilities and accuracy of the sound 

transmission prediction of various types of structures are checked by analyzing their effects.  

3.1 Thick versus thin composite model 

A representative model of helicopter with skin made up of ribbed panel with composite 

skin (Figure 2-a) is investigated in the following example. The skin is made up of three layers of 

Graphite/Epoxy. Each layer of the composite is 2.5mm thick. Both thick and thin shell theories 

are employed to predict the sound transmission loss (STL) between the cockpit and the cabin 

which are separated by the bulkhead which is an unstiffened composite shell having the same 

properties as the ribbed panel’s skin. The structural wavenumber of the bulkhead is also predicted 

using both thick and thin shell theories. It is observed in Figure 2-b that the bulkhead has pure 

bending behaviour at low frequencies and pure shearing behaviour at high frequencies. In fact, the 

two theories give approximately the same STL until 1kHz. However, the latter is overestimated 

using the classical thin plate theory over 1kHz as shown in Figure 2- c. This is mainly due to the 

fact the the shear deformation effect is ignored in thin shell theory. Also, the in-plane and out-of-

plane coupling effect is ignored in the thin shell theory.  The effects are usually negligible at low 

frequencies but must be included to model the physics of the structure at higher frequencies.  

 

 

 

 
 

 

a) Representative 

helicopter model. 

 

 
b) predicted wavenumber for 

unstiffened bulkhead example panel 

using thick and thin composite 

models 

 
c) Comparison between predicted 

transmission loss using thick and thin 

composite models with reference [15] 

Figure 2:  predicted wave number and transmission loss of unstiffened bulkhead example panel 

using thick and thin shell theory. 

3.2 Ribbed panel with thick composite skin and variable spacing 

In order to analyze the variable spacing effect, a cylindrical shell with skin made up of      

3 mm steel material is considered. The cylindrical skin is reinforced by eight stiffeners. The modal 

density is predicted for both evenly and unevenly spaced stiffeners. To account for the 

uncertainties in the rib spacing, a statistical process has been evolved by considering an ensemble 

of 7 spacing varying by 5% over the nominal values. It is observed that, the averaged estimation 

smoothens out the modal density curve, which is in very good agreement with experimental data 

compared to reference [17] and regular spacing prediction which show distinct, large peaks and 

valleys at certain frequencies for a periodic stiffened panel. This is mainly due to the periodicity 

characteristic of the panel. Indeed, in the case of periodic spacing with uniform spacing, all the 

stiffeners behave as pass band filter at the same frequencies, thus the energy is totally transmitted 

between sub panels. However, for uneven stiffener spacing, some of the stiffeners behave as pass 
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band filter while others behave as stop band filter and so the modal density results are averaged 

out more evenly in frequency as a result as can be seen in Figure 3. 

 
Figure 3: Comparison of ribbed panel modal density with even and uneven stiffener spacing 

versus experimental and Reference [17]. 

3.3 Sandwich model 

In the following example, the accuracy of the sandwich model is examined by comparison 

with experimental results. A sandwich with honeycomb core and isotropic face with Density 

𝜌 =1716 (kg/m
3
), Young’s modulus E=49 GPa, poisons ratio 𝑣 = 0.134 and thickness 

hs=5.84x10
-4

  m.  Experimental data is shown compared to a prediction using classical theory 

with thin plate assumptions versus the new approach using thick plate theory (Figure 4). Excellent 

agreement is found versus the experimental results when using the presented sandwich model. 

However, the classical sandwich model fails to correctly capture the physical behavior. Indeed, 

the SEA estimates provide unreasonable predictions for the sound transmission loss using the 

classical sandwich model at and over the coincidence frequency region which is predicted to 

occur about 300 Hz lower in frequency than the measurement.  The prediction making use of the 

presented sandwich model does capture the correct coincidence frequency region in comparison 

to the measured data. 

 
Figure 4: Comparison between predicted transmission loss using improved sandwich model and 

experimental result. 

3.4 Material properties’ effect 

In the following example, the structure borne excitation from the helicopter gearbox is 

simulated in VA One as a velocity constraint applied to the bottom face of the gear box (Figure 5- 

a). This excitation is transmitted to the helicopter skin through eight rectangular metallic beams. 

The pressure level inside the cockpit is predicted for two different configurations. In the first 
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configuration, the bulkhead wall separating the cockpit and the cabin is modeled as 3mm 

aluminum structure. In the second configuration, the bulkhead is modeled as sandwich with two 

3mm aluminum skins and a 6.35 mm honeycomb core. The rest of the helicopter skin is made up 

of ribbed panels with composite skin made up of three layers of Graphite/Epoxy of 1 mm 

thickness each.   It is observed that the pressure inside the cockpit has different level for the two 

configurations below the ring frequency at 200 Hz thought to be the ring frequency of the whole 

cockpit curved shell while between the ring frequency and the critical frequency at 3 kHz, the two 

configurations have also different level. This is mainly due to the fact that the sandwich has a pure 

bending behavior of the panel at low frequencies and core’s shearing at mid frequencies as shown 

in the wave number plot in figure 5-b. The interior SPL levels are shown in Figure 5-c where it 

can be seen that above the critical frequency the sandwich and the aluminum bulkhead have the 

same pressure level. This is due to the fact that at high frequencies, the sandwich is controlled by a 

decoupled skin bending effect which has the same properties as the uniform panel as shown in 

figure 5-b.  

 

 
 

 

a) Representative 

helicopter model. 

 

 
 

b) Wavenumber comparison on 

sandwich and uniform bulkhead 

panels 

 
c)  Comparison of pressure level 

in the cockpit for two different 

bulkhead configurations 

Figure 5: Wavenumber of bulkhead panels and pressure level in the cockpit due to structure 

born excitation 

4 CONCLUSION 

In this paper, a model for sandwich panel with composite face sheets for both ribbed and 

unribbed cases is developed. The ribbed panels’ skin is assumed to be thick composite and the 

stiffeners may be modeled as unevenly spaced. The theories are developed in a wave and modal 

approach context. For the thick composite model, shear deformation and in-plane / out-of-plane 

motion coupling were both taken into account. For the sandwich model, the physical behavior of 

the panel is represented using a discrete lamina description. The acoustic transmission problem is 

represented within the SEA context and is successfully compared to experiments and to existing 

models. The SEA estimate provides reasonable results at low frequencies using the classical 

composite and classical sandwich models. However, they both fail to correctly capture the 

physical behavior at mid and high frequencies and the thick plate theory is needed to capture these 

high-frequency effects. The interior noise effect due to airborne and structure borne excitations 

were analysed and the effect of material properties was also investigated. It was found that the 

interior noise level is sensitive to the material properties and the excitation type. This work can be 

extended to model the ribbed panel stiffeners as composite material. The application of sandwich 

as a skin for ribbed panel constitutes another challenge. 
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ABSTRACT 
 

This study concerns the implementation and the validation of an experimental method leading to 

determine the complex elastic properties (modules and coefficient of absorption) of an orthotropic 

material by a non-destructive method on a range of frequencies. Based on an inverse vibratory 

method, it requires the measurement of a transverse displacement field and is independent from 

boundary conditions. It can then be used in situ on complex structures.Besides, as regards a 

method using a field of measures, it is possible to determine local properties. The first results 

show an interesting potential of the method since it gives good results in medium and high 

frequency ranges where the structure has not a modal behavior. The proposed approach can then 

be seen as a complementary method to modal analysis approaches 
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1 INTRODUCTION 

With the massive introduction of composite component in the industrial products,it 

becomes necessary to predict exactly the mechanical behaviour of these structures in order to limit 

the costs and the mass of the whole product.During the conception step, an extensive use of finite 

element models is made to predict the static, dynamic and vibro-acoustic behaviour. To achieve 

predictions as accurate as possible, the key challenge is to enter the material characteristics into 

the model. 

 

The simplest way to define the properties of a material is to measure the characteristic 

engineer parameter by classical mechanical testing in static condition. 

But in the some cases(for example polymer materials), the behaviour determined at lowstrain 

rates is not able to report the viscous aspect which modifies these parameters. 

Then 

becausethestiffnessanddampingofcompositesmaystronglyvarywithfrequency,itisnecessaryto 

obtainmaterialpropertiesina 

widefrequencyrangeinsteadofextrapolatingresultsobtainedatlowfrequencies. 

 

Then,itisnotpossibletocharacterizethematerialdirectlyonthetargetstructureitself:Experiment

saregenerallycarriedoutonspecifictestspecimens,apreciseknowledgeofboundaryconditionsbeingcru

cial. 
In consequence it is often necessary to measure theelastic and damping properties for the 

particular plateunder study, if vibration predictions of any accuracyare needed. 

 

 In this paper, an approach tomaking such measurements is described. It is based on 

observing damping factors of orthotropic plates with free boundaries with respect to frequency. 
 

2 THEORETICAL BACKGROUND 

Let us consider a thin orthotropic plate (h is the thickness and X and Y are principal 

directions of the material) supposed to be in free boundary condition as presented in figure 1. 

 

 
Figure 1. Geometry of the model and measurement set-up. 

 

The general equation of motion of such orthotropic thin plate in the harmonic regime may 

be given by relation (1) considering an area on which no external force is applied [1]: 
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w(x, y) =
h²

ρω²
 D1

𝜕4w

𝜕x4
+ (D2 + D4)

𝜕4w

𝜕x2𝜕y2
+ D3

𝜕4w

𝜕y4
  (1) 

 

where D1, D2, D3 and D4are the flexural stiffness, ρ the density, h the thickness, ω the 

angular frequency, w(x,y)the transverse displacement.  

The flexural stiffness are given by equation (2)wherethecomplexYoung’s moduli are 

considered to be complex E(1+jη), jbeingtheunitimaginarynumberand η denotingthestructural 

damping coefficient,which characterizesmaterialdamping. 

 

𝐷1 =
𝐸𝑥

12 1 − 𝜐𝑥𝑦𝜐𝑦𝑥  
 

𝐷3 =
𝐸𝑦

12 1 − 𝜐𝑥𝑦𝜐𝑦𝑥  
 

𝐷2 =
𝜐𝑥𝑦𝐸𝑦

6. 𝜐𝑥𝑦𝜐𝑦𝑥
=

𝜐𝑦𝑥𝐸𝑥

6. 𝜐𝑥𝑦𝜐𝑦𝑥
 

𝐷4 =
𝐺𝑥𝑦

3
 

(2) 

 

Thetransversedisplacementatagivenlocationmaybeeasilyobtainedbyusingan 

accelerometeroralaservibrometer,itspartialderivativesarelessstraightforwardtoobtain.They are 

approximated by using finite difference schemes thanks to several measurements of displacement 

on a regular mesh grid. 

But the noise in the displacement field w(x,y)is considerably amplified by the finite 

difference scheme and a regularization step must be conducted [2-4]. In order to eliminate high 

wavenumbers components, a low-pass filter in the wavenumber domain is applied to the 

displacement field and the partial derivatives. 

First, each field is windowed by a bidimensionalTukey window. This preliminary step 

replaces the truncation of the field at the edges by a smooth variation from zero amplitude. Then, 

the windowed field is convolved by the finite spatial response of a low-pass filter with cut-off 

wavenumber kc. 
 

At this point, a cut-off wavenumber kc should be chosen low enough to diminish the noise 

level in the partial derivatives of the transverse displacement field, but not too low in order to keep 

as much information as possible. 

 

3 EXPERIMENTAL DEVICE 

3.1 Material 

The material ofthe study is a composite made up of UD glassfiberimpregnated by a 

vinylester resin. Panel’s size is 600 mm longand 400mm width. A stacking of 8 layers(300g/m ² 

each)oriented at 0 ° compared to the length of the plate is impregnated by the resin using a LRI 

process. The fibervolume ratio is 60 %. 
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Figure 2. LRI process. 

 

After manufacturing, the total thickness of the plate is 2mm which is constant on its 

surface. Any default such as bubbles or delamination has been identified.  According to the 

direction of the higher length (i.e. direction of fibers), the Young modulus is estimated using the 

classical laminate’s theory to be E1=20-25GPa.In the lower length, it is of E2=5-10GPa. 

 

 

3.2 Experimental device 

 

The test plate is suspended to a frame in order to be close to free boundary (see figure 3).  

 
Figure 3. Global scheme of experimental device 

 

 

A Polytec Scanning Vibrometer PSV 300 is used to measure the displacement field. The 

excitation is provided by a Brüel&Kjær 4810 shaker, supplied in power by a B&K 2718 

amplifier. The excitation signal was a periodic chirp in the frequency range [8, 3200] 

Hz.Although no knowledge of excitation level is required by the method, a B&K 8001 impedance 

head is used to provide both phase reference and input force measurement, in conjunction with a 

B&K NEXUS conditioning amplifier. 
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Figure 4. Specimen of the experimental device 

 

Datacollected from this experiment consists of out-of plane displacementsof the specimen 

in its complex form for each frequency of the study (in our case between 8Hz and 3200Hz). The 

measurements(1000 points in a 200mmx400mm surface) are made on a regular meshgrid where 

the numerical treatment will be applied to determine the elastic performances of the material. The 

point of application of the mechanical excitation is outside of this zone. 

 

4 RESULTS 

Figure 5 shows the displacement field measured on our sample at one frequency in the 

study range. The elastic wave propagation starting at the application point at lower left corner of 

the plate can be visualised. 

 

 
Figure 5. Experimental displacement field at 848Hz. 

 

 

Using the analytical method as previously presented, the evolution of the rigidity in both 

directions according to the frequency can be determined as presented in the figure6. Note that the 

orientations of axes where D3 gives information onto Ex and D1 on Ey. 
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Figure 6. Evolution of elastic properties according to frequency. 

 

 

Both rigidity of the main directions (D1 and D3) are in accordance with what can be deduce with 

the classical theory of laminate. Indeed using Poisson’s ratio, the values of modulidetermined by 

the formulae 2 are in the range of the static value. 

 

Globally, the evolution of the rigidity remains constant on the studied range of frequency of the 

study. The visco-elastic effects are so little marked as we could expect it with a thermosetting 

resin. 

 

 

 

5 CONCLUSION 

From a simple loadingin a zone of a structure to be estimated and without any boundary 

conditions, the method presented here allows the determination of the rigidity of anorthotropic 

thin plate in its main directions. 
  

Actual improvements of the method deal with a reliability increase: the filtering and the 

windowing steps, the improvement of the quality of the results in low frequencies and study on 

typical more viscous materials (thermoplastic for example). Finally a comparison with results 

from DMA will validate the accuracy of the calculated values. 
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ABSTRACT 
 

Composite structures have been introduced in the transportation industry to reduce vehicle mass 

and energy consumption. Composites have low internal damping which leads to higher levels of 

vibration and induced noise. To reduce the vibrations amplitude and thus the acoustic discomfort, 

damping elements placed in specific locations of the structure [1-2] are sometimes used. In this 

paper, the anti-vibration function is obtained by the introduction of periodic effect. This 

arrangement constitutes a phononic crystal that generates frequency ranges without free wave 

propagation [3-4], called band gap. The vibro-acoustic properties of the structure are thus 

improved. 

 

This study focuses on periodic composite plates of glass/epoxy by defining elementary cells. 

 

In a first part, when the periodicity is very smaller than the dimensions of the plate a finite 

element approach is proceed using Comsol Multiphysics ®4.4 software, to obtain the dispersion 

curves of an infinite periodic structure. The frequency associated to each wave vector which 

propagates through the elementary cell is calculating using Bloch-Floquet periodicity conditions 

on the boundaries. The dispersion curves around the edge of the irreducible Brillouin zone are 

obtained.  

 

The study is focuses on the bidirectional periodic structures. One of the configurations studied is 

a plate composed of a periodic square of rubber inclusions embedded in a composite material 

with eight-layer of fiber glass. Unlike the band diagram of a composite reference plate, the band 

diagram obtained (Fig.1) shows that waves are blocked for frequencies around 2600 Hz, in all 

directions of the wave vector. 

 

The second parts of the study concern the fabrication and characterization of unidirectional 

periodic plates, in order to take into account the technical limits of the production of periodic 

plates with composite materials. These plates are composed of a succession of strips, with a 

number of layers of glass fibers varying from one strip to another. This succession of strips 

provides directional bands gaps. To test these plates, an experimental protocol is chosen to 
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impose unidirectional wave propagation: the plate is attached in the middle between two 

aluminum beams enough rigid at low frequency. The lower beam is connected to a vibration 

exciter for exciting the structure. Several plates will be tested and compared to the numerical 

results. 

 

 

Figure 1. (a) Band diagram of a periodic composite plate with rubber inclusions, (b) Unit cell with 

inclusion. 
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