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ABSTRACT 

 

This paper investigates the vibro-acoustic response of stiffened and unstiffened laminate 

composite structures and sandwich structures based on a Statistical Energy Analysis (SEA) 

approach. SEA is a modeling procedure which uses energy flow relationships for the theoretical 

estimation of the dynamic response as well as the sound transmission through structures in 

resonant motion. The accuracy of SEA is related to the accurate estimates of its parameters 

(modal density, Damping Loss Factor (DLF) and the Coupling Loss Factor (CLF)). Wave and 

modal based approaches are developed to predict the SEA parameters for both stiffened and 

unstiffened composite panels and sandwich panels. For composite structures each layer is 

assumed to be a thick laminate with orthotropic orientation. Moreover, rotational inertia and 

transversal shearing, membrane and bending deformations are accounted for. First order shear 

deformation theory is used. The developed approach handles symmetrical and asymmetrical 

constructions of an unlimited number of transversal incompressible layers. Moreover, for the case 

of a ribbed panel with thick composite skin, the effect of variable spacing of the ribs is accounted 

for. The sandwich model uses a discrete displacement field for each layer and allows for out-of-

plane displacements and shearing rotations. The accuracy of this modeling approach is 

confirmed through comparison to measured test data and alternate validated theoretical results. 

The advantages of the new developed models compared to the classical models are also 

investigated. Representative examples of aircraft interior noise predictions for typical load cases 

are shown and the use of SEA models as a tool for guiding construction of multi-layer lightweight 

structures to meet acoustic performance and weight targets and optimize designs are presented.  

Conclusions about the overall applications and improvements offered by these approaches, 

current limitations, and future work to extend and improve these approaches are given. 
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1 INTRODUCTION 

Nowadays there is an increasing use of sandwich and laminate composite panels due to 

their light weight and higher stiffness. The ability to accurately predict the dynamic structural 

properties of such structures is essential in order to accurately predict the corresponding interior 

noise and structural vibration levels for many industrial applications including aerospace vehicles. 

Unlike the vibro-acoustic response of simple continuous structures, a detailed analysis of wave 

motions for stiffened plates is often difficult to achieve because of the complexity of the structural 

configuration and the uncertainty of the boundary conditions. Most of the previous research 

focused on the modelling of ribbed panels with regular spacing between stiffeners [1]-[2]. In 

practice ribbed panel construction is always accompanied with non-uniform, statistically variable 

spacing between stiffeners even when uniform spacing is intended. Little previous research was 

developed to account for this stiffener spacing uncertainty. 

The Statistical Energy Analysis (SEA) technique is commonly used at higher frequencies 

to predict airborne and structure borne noise transmission for many industrial applications. Being 

able to properly characterize complex ribbed and unribbed multi-layer lightweight structures and 

derive the modal density and coupling loss factors (CLF) is essential. A large number of 

researchers have studied these parameters for single-layer structures but only a limited amount of 

work has been carried out to determine these parameters for sandwich panel and ribbed or 

unribbed panels with thick composite skin. For instance, Zhou and Crocker [3] analysed the sound 

transmission of sandwich panels where the classical sandwich formulation is used to predict the 

modal density and the coupling loss factor is measured. Other researchers modelled the laminate 

composite as a two-dimensional problem wherein the displacement field in each lamina is based 

on Kirchhoff’s hypothesis [4]-[6]. Moreover, most of the existing models neglect the shear and 

the inplane contributions as well as the rotational inertia that strongly influence the high-

frequency behavior of these structures.  More accurate results are provided by a first-order shear 

deformation theory [7]-[9] or other higher order shear deformation theories [10]. The first-order 

shear deformation theory based on Reissner–Mindlin-type assumptions takes the transverse shear 

deformation into account. However, it requires shear correction factors to compensate for errors 

resulting from the approximation of the shear-strain distribution. For instance, Ghinet and Atalla 

[11]-[12] used Reissner–Mindlin-type assumptions in a Transfer Matrix Method (TMM) context. 

For ribbed panels, the stiffener spacing uncertainty effect was always ignored in the modelling of 

these structures. Only a few researchers studied this effect; for instance, Mejdi and Atalla [13] 

developed a semi analytical model to analyses ribbed panels with evenly and unevenly stiffened 

composite laminate flat structure. Langley [14] derived the modal density of periodically stiffened 

beam and plate structures in terms of phase constants, which were associated with propagating 

wave motion. In his analysis he assumes that the modal density is not affected by the imperfection 

in the attachment.  

In this paper, a wave and modal based approach are developed to model both sandwich 

and ribbed or unribbed panels with thick composite skins in an SEA context. The effect of shear 

deformation and the in-plane / bending coupling effects are employed to improve the vibro-

acoustic response prediction of multilayer structures. Moreover, for ribbed panels, the stiffeners 

spacing uncertainty effect is accounted for. SEA prediction using classical models are compared 

to the presented models using thick plate theory. The latter are found more suitable for both low- 

and high- frequency analysis. The stiffeners spacing uncertainty has an important effect on the 

dynamic response of ribbed panels. 

2 THEORY 

2.1 Thick composite model 
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The laminate panels considered here have a symmetric or an asymmetric configuration. 

The panel is assumed infinite. For a point M belonging to the laminated composite shell, the 

displacement field is defined by the Mindlin type assumption where both bending and transverse 

shear effects are considered:  
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,U V and W are the in-plane and the transversal displacements and 
x ,

y  are the 

rotational displacements in x and y directions, respectively and z  is the layer’s point position from 

lamina mid-plane. Geometrically, the shell is considered to be of infinite extent in the axial (x) 

direction and thus the origin for both x and y is arbitrary. Nevertheless, the origin for the z axis is 

defined on a reference surface passing through the middle thickness of the shell. 

The dynamic equilibrium relations of the unstiffened in-vacuum panel are given by 

integrating the stress continuity relation through the thickness of the lamina [13]:  
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where , ,x y xyN N N are the in plane forces and , ,x y xyM M M  are the bending moments and ,x yQ Q  are 

the shearing forces. sm  and zI , 2zI are the total mass per unit area and the total rotational inertia 

terms, respectively. Using the stress displacement relation and integrating the stress through the 

thickness, the constitutive relation between the forces and the displacements can be written as: 
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where Aij, Bij and Dij  are the extensional, extensional-bending and bending stiffness. The equations 

of motion can be obtained by introducing (3) into (2) and assuming a solution in the following 

form: 

     , , , , exp
T

x y x ye U V W jk jk j t               (3) 

where xk  and 
yk are the components of the structural wave number, 

pk  is defined as a function of 

the heading angle : 
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Using Eqs. (2)-(4), we obtain the following compact matrix equation: 
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          2 2

3 2 1 0p pk A ik A A M e    ,           (5) 

For a wave-based approach, one can obtain the eigen solutions from Eq (6). The three 

smallest real positive solutions correspond to the bending, extension and shearing wavenumbers. 

The extensional and bending matrices can be obtained from the eigen solution and all the SEA 

parameters: CLF, DLF and modal density, can be obtained. 

2.2 Ribbed panel with thick composite skin and periodic and variable stiffener spacing 

2.2.1 Periodic ribbed panels 

For ribbed panel, the stiffened effect could be accounted for by correcting the mass and 

stiffeners in the wavenumber domain. Indeed, Bremner  [16] has explained the distinct behaviours 

in terms of wavenumbers of a flat ribbed plate of width  Lx and height Ly stiffened with ribs and 

frames with spacing  Sx  and  Sy between the ribs and frames. As the modal half-wavelength in the 

x and y directions goes below the Lx and  Ly  dimensions, the plate behaviour shifts from global 

behaviour, over the plate area  (Lx, Ly), to periodic behaviour over areas delimited by (Sx, Ly),  (Lx, 

Sy).  Finally, when the modal half-wavelength goes below the rib and frame spacing Sx and Sy, the 

modal behaviour is determined by the behaviour of a flat uniform subpanel delimited by the ribs 

and frames (local behaviour). Those four conditions represent the four models required when fully 

describing the modal behaviour of a stiffened plate over a large frequency band. When a particular 

condition is met for periodic modes behaviour, the number of modes should be multiplied by the 

multiplicity factor 𝜇.  

For example, the mass and stiffness correction in region 1 where the bending wave 

numbers 
m xk S  and n yk S  and both x and y ribs smeared over surface (Lx  , Ly) with a 

group of multiplicity 1p  , are given by: 
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Where m denote the mass, E, G are the stiffener’s young and shear modulus respectively, I 

and A are the stiffener’s moment of intertie and cross section respectively. 

Once the mass and stiffness are corrected, the modal frequency can be obtained by 

considering a simply-supported boundary condition and by solving Eq (6) for each mode order. 

Indeed, for a simply-supported boundary condition, the bending wavenumber is given by  

   mn x yk m L n L    where m and n are the modal orders. Eq (6) can be rewritten as: 

         2 2

3 2 1 0mn mn mnk A ik A A M e      (8) 

To account for any curvature and tension effects that may be acting on the structure, the 

modal frequency can be corrected as: 
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_mn cor mn C T         (9) 

where the terms C and T are the curvature and tension correction factors. 

By solving Eq (8) for the modal frequency, the mode list can be obtained by evaluating the 

modal frequency regarding each bandwidth and in this manner all the SEA parameters can be 

obtained. 

2.2.2  Variable spacing effect 

To account for the uncertainties in the ribs spacing, a statistical process can be employed 

by considering an ensemble of i spacing varying by a certain percentage over the nominal rib 

spacing values. It is assumed that the spacing uncertainty can be computed as though it has a 

normal distribution as shown in Figure 1:  

 
Figure 1: Graph of normal probability density function. 
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where f is the probability density function (pdf). The modal energy corresponding to each spacing 

could be computed using the power balance equation: 
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𝜂(𝑆𝑥
𝑖 , 𝑆𝑦

𝑖 )] is the SEA coupling matrix corresponding to a given spacing 𝑆𝑥
𝑖 , 𝑆𝑦

𝑖  . 𝐸𝑖  and 𝜋𝑖 are the 

corresponding modal energy and injected power respectively.  

The average estimate of all the SEA parameters and vibro-acoustic responses can be 

obtained using the following formulation: 
7
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                                (12) 

𝑉𝑖 is an SEA parameter such as the modal density, CLF, DLF or injected power and f 
i
 is the pdf  

given by 𝑓𝑖 =
1

√2𝜋
𝑒−𝑧𝑖

2 2⁄  for a given  𝑧𝑖 = [−3 − 2 − 1 0 1 2 3] as mentioned in Eq (10). 

2.3 Sandwich model with composite skin 

For a sandwich model, a Mindlin-type assumption is used to describe the displacement 

field of the core [12]. The skins are assumed to be thinner than the core and display bending 

behaviour. Their displacement field is built using the Love-Kirchhoff’s assumptions but is 

corrected to account for the rotational influence of the transversal shearing in the core [12].  
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where rkx and rky are the rotational coefficients. 
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Perfect bonding of the layers is assumed, so that the displacement field remains 

continuous throughout the interface between two consecutive layers.  

The relations of stresses’ dynamic equilibrium are written for each layer separately in 

order to develop the continuity of stress relations at the interface between the layers. These 

relationships are next integrated through the layer’s thickness and the dynamic equilibrium 

relations along the x and y directions are obtained. For the top skin – core interface represented by 

the superscript 
1
, the relations of continuity are written as follows:  
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The panel’s dynamic behaviour is governed by the dynamic equilibrium relations of the 

forces and moments along the x, y and z directions. The sandwich-type panel assumptions are 

considered; the membrane forces N
x
, N

y 
and N

xy 
and the bending moments M

x
, M

y 
and M

xy 
are 

computed through the thickness of the skins while the transversal shearing forces Q
x 

and Q
y 

are 

expressed through the core’s thickness. Considering the stresses’ continuity relations along the x, 

y, and z directions as well as the panel’s incompressibility along the z direction and integrating 

through the panel thickness, the following equilibrium relations can be written:  

2

2

2

_ 2

2

_ 2

yx
s

xyx
x z t

y xy

y z t

QQ W
m

x y t

MM U
Q I

x y t

M M V
Q I

y x t

 
 

  

   
    

   

   
    

   

                            (15) 

The shearing forces Q
x 

and Q
y 

can be replaced in the last two equations to express the 

following relationship of motion: 
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The stresses’ continuity relations compose the system of dynamic equilibrium equations 

of sandwich composite panels. This system can be expressed in a matrix form using the 

constitutive equation Eq (4) in the same solution form as in Eq (6): 

           4 3 3 0k A jk B k C jk D E e               (17) 

As for the thick composite model, the eigenvalue problem can be solved and sorted out to 

find the three smallest real positive solutions. All the SEA parameters (CLF, DLF and modal 

density) can then be easily computed. 

3 NUMERICAL RESULTS 

Various numerical examples are given and validated by the VA One commercial software 

code. Both ribbed and unribbed panels with thick composite and uniform skin are analyzed. The 

effect of variable spacing between stiffeners reinforcing thick composite skin is also analysed.  

The accuracy of the modeling approach for sandwich panels in which the skin layers are made of 

composite materials is also analysed. In the following examples, both the wave and modal 

approach based predictions using the different models are examined by comparing various vibro-
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acoustic indicators with experimental and existing models. Acoustic behavior under airborne and 

structure borne excitation is investigated. VA One capabilities and accuracy of the sound 

transmission prediction of various types of structures are checked by analyzing their effects.  

3.1 Thick versus thin composite model 

A representative model of helicopter with skin made up of ribbed panel with composite 

skin (Figure 2-a) is investigated in the following example. The skin is made up of three layers of 

Graphite/Epoxy. Each layer of the composite is 2.5mm thick. Both thick and thin shell theories 

are employed to predict the sound transmission loss (STL) between the cockpit and the cabin 

which are separated by the bulkhead which is an unstiffened composite shell having the same 

properties as the ribbed panel’s skin. The structural wavenumber of the bulkhead is also predicted 

using both thick and thin shell theories. It is observed in Figure 2-b that the bulkhead has pure 

bending behaviour at low frequencies and pure shearing behaviour at high frequencies. In fact, the 

two theories give approximately the same STL until 1kHz. However, the latter is overestimated 

using the classical thin plate theory over 1kHz as shown in Figure 2- c. This is mainly due to the 

fact the the shear deformation effect is ignored in thin shell theory. Also, the in-plane and out-of-

plane coupling effect is ignored in the thin shell theory.  The effects are usually negligible at low 

frequencies but must be included to model the physics of the structure at higher frequencies.  

 

 

 

 
 

 

a) Representative 

helicopter model. 

 

 
b) predicted wavenumber for 

unstiffened bulkhead example panel 

using thick and thin composite 

models 

 
c) Comparison between predicted 

transmission loss using thick and thin 

composite models with reference [15] 

Figure 2:  predicted wave number and transmission loss of unstiffened bulkhead example panel 

using thick and thin shell theory. 

3.2 Ribbed panel with thick composite skin and variable spacing 

In order to analyze the variable spacing effect, a cylindrical shell with skin made up of      

3 mm steel material is considered. The cylindrical skin is reinforced by eight stiffeners. The modal 

density is predicted for both evenly and unevenly spaced stiffeners. To account for the 

uncertainties in the rib spacing, a statistical process has been evolved by considering an ensemble 

of 7 spacing varying by 5% over the nominal values. It is observed that, the averaged estimation 

smoothens out the modal density curve, which is in very good agreement with experimental data 

compared to reference [17] and regular spacing prediction which show distinct, large peaks and 

valleys at certain frequencies for a periodic stiffened panel. This is mainly due to the periodicity 

characteristic of the panel. Indeed, in the case of periodic spacing with uniform spacing, all the 

stiffeners behave as pass band filter at the same frequencies, thus the energy is totally transmitted 

between sub panels. However, for uneven stiffener spacing, some of the stiffeners behave as pass 
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band filter while others behave as stop band filter and so the modal density results are averaged 

out more evenly in frequency as a result as can be seen in Figure 3. 

 
Figure 3: Comparison of ribbed panel modal density with even and uneven stiffener spacing 

versus experimental and Reference [17]. 

3.3 Sandwich model 

In the following example, the accuracy of the sandwich model is examined by comparison 

with experimental results. A sandwich with honeycomb core and isotropic face with Density 

𝜌 =1716 (kg/m
3
), Young’s modulus E=49 GPa, poisons ratio 𝑣 = 0.134 and thickness 

hs=5.84x10
-4

  m.  Experimental data is shown compared to a prediction using classical theory 

with thin plate assumptions versus the new approach using thick plate theory (Figure 4). Excellent 

agreement is found versus the experimental results when using the presented sandwich model. 

However, the classical sandwich model fails to correctly capture the physical behavior. Indeed, 

the SEA estimates provide unreasonable predictions for the sound transmission loss using the 

classical sandwich model at and over the coincidence frequency region which is predicted to 

occur about 300 Hz lower in frequency than the measurement.  The prediction making use of the 

presented sandwich model does capture the correct coincidence frequency region in comparison 

to the measured data. 

 
Figure 4: Comparison between predicted transmission loss using improved sandwich model and 

experimental result. 

3.4 Material properties’ effect 

In the following example, the structure borne excitation from the helicopter gearbox is 

simulated in VA One as a velocity constraint applied to the bottom face of the gear box (Figure 5- 

a). This excitation is transmitted to the helicopter skin through eight rectangular metallic beams. 

The pressure level inside the cockpit is predicted for two different configurations. In the first 
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configuration, the bulkhead wall separating the cockpit and the cabin is modeled as 3mm 

aluminum structure. In the second configuration, the bulkhead is modeled as sandwich with two 

3mm aluminum skins and a 6.35 mm honeycomb core. The rest of the helicopter skin is made up 

of ribbed panels with composite skin made up of three layers of Graphite/Epoxy of 1 mm 

thickness each.   It is observed that the pressure inside the cockpit has different level for the two 

configurations below the ring frequency at 200 Hz thought to be the ring frequency of the whole 

cockpit curved shell while between the ring frequency and the critical frequency at 3 kHz, the two 

configurations have also different level. This is mainly due to the fact that the sandwich has a pure 

bending behavior of the panel at low frequencies and core’s shearing at mid frequencies as shown 

in the wave number plot in figure 5-b. The interior SPL levels are shown in Figure 5-c where it 

can be seen that above the critical frequency the sandwich and the aluminum bulkhead have the 

same pressure level. This is due to the fact that at high frequencies, the sandwich is controlled by a 

decoupled skin bending effect which has the same properties as the uniform panel as shown in 

figure 5-b.  

 

 
 

 

a) Representative 

helicopter model. 

 

 
 

b) Wavenumber comparison on 

sandwich and uniform bulkhead 

panels 

 
c)  Comparison of pressure level 

in the cockpit for two different 

bulkhead configurations 

Figure 5: Wavenumber of bulkhead panels and pressure level in the cockpit due to structure 

born excitation 

4 CONCLUSION 

In this paper, a model for sandwich panel with composite face sheets for both ribbed and 

unribbed cases is developed. The ribbed panels’ skin is assumed to be thick composite and the 

stiffeners may be modeled as unevenly spaced. The theories are developed in a wave and modal 

approach context. For the thick composite model, shear deformation and in-plane / out-of-plane 

motion coupling were both taken into account. For the sandwich model, the physical behavior of 

the panel is represented using a discrete lamina description. The acoustic transmission problem is 

represented within the SEA context and is successfully compared to experiments and to existing 

models. The SEA estimate provides reasonable results at low frequencies using the classical 

composite and classical sandwich models. However, they both fail to correctly capture the 

physical behavior at mid and high frequencies and the thick plate theory is needed to capture these 

high-frequency effects. The interior noise effect due to airborne and structure borne excitations 

were analysed and the effect of material properties was also investigated. It was found that the 

interior noise level is sensitive to the material properties and the excitation type. This work can be 

extended to model the ribbed panel stiffeners as composite material. The application of sandwich 

as a skin for ribbed panel constitutes another challenge. 
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