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ABSTRACT 

 
This work is dedicated to the Weak Trefftz Discontinuous Methods, an extension of the 
Variational Theory of Complex Rays (VTCR), for the resolution of frequency vibrations of 
composite structures. This Weak Trefftz Discontinuous Methods allows one to build easily hybrid 
finite element / Trefftz strategies. Numerical illustrations are presented.   
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1 INTRODUCTION 

The use of numerical simulation techniques has become an indispensable part of the industrial 
design process of innovative constructions for vibration performances. The Galerkin Finite 
Element Method (FEM) [1] is a well-established tool, which is commonly used for the analysis of 
vibration problems. However, as it uses continuous, piecewise polynomial shape functions, it 
often leads to huge numerical model. As a consequence, in practice, its use is restricted to low-
frequency range applications. Trefftz methods [2] have been proposed as a means to bypass this 
limitation. They differ from the FEM in the expansion of the field variables, as they use shape 
functions that are exact solutions of the governing differential equations. Compared to the FEM, 
Trefftz methods often lead to a considerable reduction in model size and computational effort. 
Some examples of such methods are: a special version of the partition of unity method [3], the 
ultra weak variational method [4], the plane wave discontinuous Galerkin method [5], the least-
squares method [6], the discontinuous enrichment method [7], the element-free Galerkin method 
[8], the wave boundary element method [9] and the wave-based method [10]. The Variational 
Theory of Complex Rays (VTCR), first introduced in [11] for steady-state vibration problems and 
in [12] for 3-D acoustics problems, also belongs to that category. The main differences between 
these methods lie essentially in the treatment of the transmission conditions at the boundaries of 
the elements or substructures. 

The VTCR uses a specific weak formulation of the problem, which enables the approximations 
within the substructures (the shape functions that verify the governing equations) to be a priori 
independent of one another. Thus, any type of shape function can be used within a given 
substructure provided it satisfies the governing equation, thus giving the approach great flexibility. 
In this work, we introduce extensions of the classical VTCR formulation: the constraint, which 
imposes the verification of the governing equation, is weakened. This leads to a new numerical 
method, which can be called the weak Trefftz discontinuous Galerkin method. These extensions 
allow one to easily couple different types of numerical models and then get hybrid models: the 
FEM and the classic VTCR models used together, for example. As a consequence, they lead to 
new approaches to the resolution of engineering problems where composite structures have to be 
faced.  

2 DEVELOPMENT OF HYBRID METHODS 

Our hybrid method will be presented on a Helmholtz vibration problem. Then, consider a standard 
problem defined on a domain Ω  with boundaries ∂Ω = ∂1Ω∪∂2Ω  (see Figure 1): find 
u∈ H1(Ω)  such that  

(1+ iη)Δu+ k2u+ rd = 0 over Ω

u = ud over ∂1Ω

(1+ iη)∂nu+ hiku = gd over ∂2Ω

$

%
&&

'
&
&

 

where ∂nu = grad u.n , (n being the outward normal). k is the wave number; h is a constant related 
to the vibration impedance; rd  and gd  are prescribed sources. The damping coefficient η  is 
positive. The data are supposed to be sufficiently regular to have a unique solution.  
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Let us introduced the VTCR variational formulation for this problem. To do this, the domain Ω  is 
divided into subdomains ΩE . The interface between two subdomains E and E’ is denoted ΓEE ' . 
The VTCR is a Trefftz approach which uses the affine space U = u / u∈UE onΩE{ }  with  

UE = uE / uE ∈VE ⊂ H1(ΩE );(1+ iη)ΔuE + k
2uE + rd = 0 onΩE{ }  

 

The vector spaces (with rd = 0 ) associated with U  and UE  are denoted U0  and UE,0 . We also 
denote u{ }EE ' = (uE +uE ' )ΓEE '  and u[ ]EE ' = (uE −uE ' )ΓEE ' . Denoting qu = (1+ iη)grad u , the VTCR 
formulation can be written: find u∈U  such that 

Re −ik ∫ ΓEE '
1
2
qu.n{ }EE ' v{ }

EE '
−
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qv.n$
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-
-
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where the over line represents the complex conjugate part, and “Re” the real part. It is proven that 
this variational formulation is equivalent to the reference problem. All that has to be done to get 
an approximation is to replace UE  by the finite dimension subspace UE

h  in the variational 
formulation, for example spanned by NE  propagative waves eik (θ ).x  regularly reparted on the 
θ −polar 0;2π[ [  range for 2-D examples. 

 

 
Figure 1: Left: definition of the computational domain. Middle: definition of the subdomains. 

Right: coupling of the FEM and VTCR descriptions for hybrid models. 

 
However, one constraint with the VTCR is the need for verifying the governing equation (also 
called the Trefftz constraint): u∈U . As a consequence, FEM shape functions can not be used 
directly. Then, in order to develop hybrid methods, which mix VTCR and FEM approximations, 
one has to weaken this constraint (then leading to the definition of weak Trefftz methods). To do 
this, it is necessary to modify the variational formulation. The new variational formulation is now: 
find u∈U  (with now no constraint on U ) such that: 
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As one can see, the difference between this formulation and the last one is just the add of a new 
term which weaken the governing equation. Again, it can be demonstrated that this formulation is 
equivalent to the reference problem. As no constraint is needed for the definition of the space U , 
FEM approximation can be used anywhere it is needed. We can also mix the approximations by 
using the VTCR approximation in a partition Ω1  and the FEM approximation in another partition 
Ω2  (see Figure 1). As a consequence, a great flexibility is provided by such an approach, 
especially on composite structures, where VTCR or FEM can be used (see [13] for the VTCR). 

 

3 NUMERICAL ILLUSTRATION 

We here consider the example described in Figure 2 for the illustration of hybrid methods. The 
problem is considered to be homogeneous, and restricted to a 2-D L-curve shape domain. The 
wave numbers of the fluids a and b are ka = 6.5m

−1  and kb = 29.4m
−1 . The damping coefficients 

are ηa =ηb = 0.001 . The boundary conditions are Robin condition with h = 0.001 and 
gda = 0 or 1m

−1 . 

 

 
Figure 2: Definition of the computational domain for the illustration example used in Section 3. 



DYNCOMP’2015  2-4 June 2015, Arles (France) 
 

 

5 

 

 

The selected subdomaining for computing the problem can be seen in Figure 3. The FEM 
approximation has been used in Ω1 , where the wavelength is the smallest. Its mesh uses 10 
elements along the x-axis and 40 elements along the y-axis, leading to a mesh with 451 DOFs. 
The VTCR approximation has been used in the subdomains ΩE with E ∈ 2..13{ } . In each of 
these subdomains, the number NE  of the regularly oriented used rays satisfies 
NE = 2.k.diam(ΩE )[ ]  where [�] stands for the integer part, k  stands for the wavenumber and 
diam(ΩE )  stands for the diameter of ΩE . With such a choice, we are sure that the VTCR 
subdomains contains enough DOFs to get a good solution (see the heuristic criterion in [12]). The 
corresponding result can be seen on Figure 3. One can see that, globally, the solution looks like 
the FEM reference solution visible in Figure 3, and computed with a very refined mesh. Indeed, 
almost all the vibration peaks are located at the right location and have the right amplitude. Then, 
this example validates the proposed approach and shows that the hybrid method can solve this 
very complex numerical example, which mixes different kind of approximation with different 
kind of physics. 

 

 
Figure 3 Left: selected subdomaining and modeling for computing the problem of Section 3, 

defined in Figure 2. Middle: FEM reference solution. Right: numerical result obtained with the 
proposed hybrid approach. 

 
 

4 CONCLUSION 

In the VTCR proposed in [11], [12] and [13], the solution of a vibrational problem is tough in an 
approximated space spanned by exact solutions of the governing equation (i.e. propagative 
waves). Their continuities along the interface between the subdomains are ensured thanks to a 
dedicated variational formulation. Here, this variational formulation is extended in such a way that 
any kind of approximation can be used: exact solutions of the governing equation, or not. Then, 
hybrid approximation mixing VTCR and FEM approximation can be used. This has been 
illustrated on an example, which mixes two types of fluid. Waves are used to approximate the 
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vibrational response of the fluid which contains the smallest wavelength. Polynomial FEM shape 
functions are used to approximate the response the fluid which contains the largest wavelength. 
As a consequence, this work is dedicated to the definition of a new generation of computational 
strategy, able to easily mix different kind of approximations, which is useful for the prediction of 
the vibrational performances of composite structures. 
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