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ABSTRACT 
 

In this paper, a theoretical model based on Hamilton’s principle and spectral analysis is used to 

obtain the geometrically non linear free and steady state forced response of a laminated skew 

plate at large vibration amplitudes. Such a structure is analyzed regarding the influence of 

different parameters: the intensity of the excitation force, the ply properties, the plate aspect ratio 

and skew angle. The solution of the amplitude equation is obtained in each case using the explicit 

analytical approach previously developed.  The results showed, as may be expected due to the 

membrane forces induced by the large vibration amplitudes, a non linearity of the hardening type 

with a shift to the right of the bent frequency response function, in the neighborhood of the 

fundamental mode.  The effects of the various parameters mentioned above have been examined 

and the comparison between the results obtained and those available in previous studies showed 

a good agreement. 
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1 INTRODUCTION 

Field like Aerospatiale, mechanical and civil engineering are commonly used the thin laminated 

composite skew plates on their applications. Generally, such structures are supported a forces, and 

vibrating in high amplitude, inducing a new behavior in the lamina constituted the composite 

material. Analytical methods are interesting to understand the influence of different parameters on 

the response of the structure, and complete the numerical methods as a basic reference tool. A lot 

of studies are concerned by analytical and numerical method. Kadiri and Benamar  [1-3] has 

developed a semi analytical method based on Hamilton's principle and spectral analysis, for 

determination of the geometrically non-linear free and forced response of thin straight structures. 

Two models for non-linear vibration of beam and plate have been proposed. These two models 

were based on the linearization of the nonlinear algebraic equations, written in the modal basis, in 

the neighbourhood of each resonance. The first formulation leads to explicit analytical 

expressions for higher mode contribution coefficients to the ith non linear mode shape of the 

structure considered, as functions of the amplitude of vibration, the mass, rigidity, and non 

linearity tensors. This first model was shown to be applicable to finit amplitude of vibration, up to 

0.8 times the beam thickness, and 0.5 times the plate thickness. The second formulation was 

leaded to similar results for higher amplitudes of vibration, up to 2.3 time the beam thickness, and 

once the plate thickness via solution of reduced linear systems. Das and al analysed [4] the static 

behaviour of thin isotropic skew plates under uniformly distributed load with the geometric 

nonlinearity using a variational method based on total potential energy. Duan and Mahendran [5] 

analysed the large deflection behavior of skew plate with various skew angles, length to width 

ratios, thicknesses and supported edges under uniformly distributed and concentrated loads using 

a new hybrid/mixed shell element. Also, published works devoted to the forced vibration of 

composite plates was found in literature. Han and Petyt [6] investigated the forced vibration of 

symmetrically laminated plates using the hierarchical finit element method (HFEM). Nguyen-Van 

and al [7] presented an improved finite element computational model using a flat four-node 

element with smoothed strains for geometrically nonlinear analysis of composite plate/shell 

structures. The Von-Karman’s large deflection theory and the total Lagrangian approach are 

employed in the formulation of the element to describe small strain geometric nonlinearity with 

large deformations using the first-order shear deformation theory (FSDT). Harras and Benamar 

[8, 9] investigated theoretical and experimental of the non-linear behavior of various fully 

clamped rectangular composite panels at large vibration amplitudes. Ribeiro and Petyt [10] has 

applying the principle of virtual work and the HFEM for studying the steady state, geometrically 

non-linear, forced vibration of isotropic and composite laminated rectangular plates under 

harmonic external excitation. 

This work presents an explicit analytical model for the steady state, geometrically non 

linear, periodic forced vibration of fully clamped thin skew composite plates, under harmonic 

external excitation. The theoretical model developed in [1-3] was adapted here.  Comparison was 

made between the iterative method and the approximate explicit method. The frequency response 

curves have been obtained at the plate centre, for various levels of loading, various skew angles 

and various aspect ratios. It appeared that the method works well, since excellent agreement was 

found between the result of the present model and those published in the literature.  

2 EXPLICIT ANALYTICAL FORMULATION FOR THE GEOMETRICALLY 

NONLINEAR LAMINATED SKEW PLATE EXCITED HARMONICALLY BY 

CONCENTRATED OR DISTRIBUTED FORCES 
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Consider the skew plate with a skew angle  shown in Figure 1. For the large vibration amplitudes 

formulation developed here, it is assumed that the material of the plate is elastic, isotropic and 

homogeneous. The thickness of the plate is considered to be sufficiently small so as to avoid the 

effects of shear deformation. The skew plate has the following characteristics:  a, b, S: length, 

width and area of the plate; x-y: plate co-ordinates in the length and the width directions; -η, H: 

Skew plate co-ordinates and plate thickness; E, : Young’s modulus and Poisson’s ratio; D, : 

plate bending stiffness and mass per unit volume.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Skew plate in x-y and -η co-ordinate system 

 

For the classical plate laminated theory, the strain-displacement relationship for large 

deflections are given by: 
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(2) 

U, V and W are displacements of the plate mid-plane, in the x, y and z directions 

respectively. For the laminated plate having n layers, the stress in the Kth layer can be expressed 

in terms of the laminated middle surface strains and curvatures as: 

 σk =  Q  k ε .  (3) 

In which  𝜎 𝑘
𝑇 =  𝜎𝑥𝜎𝑦𝜎𝑥𝑦    and terms of the matrix  𝑄   can be obtained by the 

relationships given in reference [11]. The in-plane forces and bending moments in a plate are 

given by: 

 

 

 y 

x,  
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A, B and D are the symmetric matrices given by the following Equation 5.  𝐵 = 0 for 

symmetrically laminated plates [12]. 

 Aij , Bij , Dij =  Qij
 k  1, z, z2 

H
2 

−H
2 

dz. 

 

(5) 

Here the 𝑄𝑖𝑗
 𝑘 

 are the reduced stiffness coefficients of the kth layer in the plate co-

ordinates. The transverse displacement function W may be written as in reference [10] in the form 

of a double series: 

W =  Ak 
T W  sinkωt.  (6) 

Where  Ak 
T =  a1

k , a2
k , … , an

k    is the matrix of coefficients corresponding to the kth 

harmonic,  W T =  w1, w2 , … , wn   is the basic spatial functions matrix, k is the number of 

harmonics taken in to account, and the usual summation convention on the repeated index k is 

used. As in reference [13], only the term corresponding to k=1 has been taken into account, which 

has led to the displacement function series reduced, to only one harmonic: i.e., 

W = ai  wi x, y sinωt.  (7) 

Here the usual summation convention for the repeated indexes i is used. i is summed over 

the range 1 to n, with n being the number of basic functions considered. The expression for the 

bending strain energy Vb, axial strain energy Va and kinetic energy T are given in reference 

(Harras 2001) in  the rectangular co-ordinate (x,y). The skew co-ordinates are related to the 

rectangular co-ordinate (,) by: =x-y tan ; =y/cos. So, the strain energy due to bending Vb, 

axial strain energy Va and kinetic energy T are given in the -η co-ordinate system. In the above 

expressions, the assumption of neglecting the in plane displacements U and V in the energy 

expressions has been made as for the fully clamped rectangular isotropic plates analysis 

considered in reference [13]. Discretization of the strain and kinetic energy expressions can be 

carried out leading to: 

Vb =
1

2
sin2 ωt aiajkij  ; Va =

1

2
sin4 ωt aiajakalbijkl  ; T =

1

2
ω2cos2 ωt aiajmij . 

 
(8) 

In which mij, kij and bijkl are the mass tensor, the rigidity tensor and the geometrical non-

linearity tensor respectively. Non-dimensional formulation of the non-linear vibration problem 

has been carried out as follows.  

wi , η = Hwi
∗  


a
,
η

b
 = Hwi

∗ ∗, η∗ . 
 

(9) 

Where ∗and η∗are non-dimensional co-ordinates  ∗ =


a
 and η∗ =

η

b
 one then obtains: 

 
N
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 =  
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(4) 
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kij =
aH5E

b3
kij
∗ ;  bijkl =

aH5E

b3
bijkl
∗ ; mij = ρH3abmij

∗ . 
 

(10) 

Where the non-dimensional tensors m*ij, k*ij and b*ijkl are given in terms of integrals of 

the non-dimensional basic function wi*, non-dimensionnal extensional and bending stiffness 

coefficient A
*
ij and D

*
ij , skew angle  and aspect ratio α. 

Upon neglecting energy dissipation, the equation of motion derived from Hamilton’s 

principle is: 

δ (V − T)
2π

0

= 0. 
 

(11) 

Where V=Va+Vb. Insertion of  Equations 8 into Equation 11, and derivation with respect 

to the unknown constants ai, leads to the following set of non-linear algebraic equations: 

2aikir
∗ + 3aiajakbijkr

∗ − 2ω∗aimir
∗ = 0. 

 
(12) 

Where r=1, …, n. These have to be solved numerically. To complete the formulation, the 

procedure developed in [8] is adopted to obtain the first non-linear mode. As no dissipation is 

considered here, a supplementary equation can be obtained by applying the principle of 

conservation of energy, leads to the equation: 

ω∗2 =
aiajkij

∗ + (3/2)aiajakalbijkl
∗

aiajmij
∗ . 

 

(13) 

This expression for ω*
2
 is substituted into Equation 12 to obtain a system of n non-linear 

algebraic equations leading to the contribution coefficients ai, i=1 to n. ω and ω* are the non-

linear frequency and non-dimensional non-linear frequency parameters related by: 

ω2 =
D

b4cos4θ
ω∗2. 

 
(14) 

To obtain the first non-linear mode shape of the skew plate considered, the contribution of 

the first basic function is first fixed and the other basic functions contributions are calculated via 

the numerical solutions of the remaining (n-1) non-linear algebraic equations. 

In this section, a fully clamped laminate skew plate excited by a concentrated harmonic 

force Fc applied at the point (0,0); or by a distributed harmonic uniform force F
d
, distributed 

over the surface  of the plate S are considered.  F
c
 and F

d
 may be written using the Dirac function 

 as: 

Fc ,, t = Fcδ −
0
 δ −

0
 sin ω t.      

 
(15) 

Fd ,, t = Fd sinω t   if  ,  S.       (16) 

Fd ,, t = 0   if  , S.  (17) 
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The corresponding generalized forces Fi
c
(t) and Fi

d
(t) in the beam function basis (BFB) are 

given by: 

Fi
c t = Fcwi x0, y0 sin ω t = fi

c sinω t.       (18) 

Fi
d t = Fd sinω t  wi x, y 


dxdy = fi

d sinω t.      
 

(19) 

The explicit analytical method has been successively applied in references [1-3] to non-

linear free and forced vibrations, occurring at large displacements amplitudes, of rectangular plate. 

The purpose of this paper is to apply the explicit simple formulation to non-linear forced 

vibrations of laminated skew plate, then, make comparison of the new results with those found by 

the iterative method and with the previous ones available in the literature in order to determine 

exactly the limit of validity of this formulation. Analytical details are given in this section for the 

first non-linear mode shape of a forced fully clamped laminated skew plate. As it was noticed that 

the contribution a1 remains significantly higher than a2 to an, denoted in what follows as 2, 3,…, 

18, the main idea of the approach presented in references [1-3] was to simplify the non-linear 

expression aiajakbijkr in Equation 12, which involves summation for the repeated indices i, j , k  

over the range {1,2,…,n}, by neglecting both first and second order terms with respect to i, i.e. 

terms of the type kr11k
2
1 ba   or of the type jkr1kj1 ba   so that the only remaining term is *

r111
3
1 ba . 

The Equation 12 becomes: 

 kir
∗ − ω∗2mir

∗  εi +
3

2
a1

3b111r
∗ = fr

∗, r = 2,3, … ,18.     
 

(20) 

Where 𝑓𝑖
∗𝑐  and  𝑓𝑖

∗𝑑  corresponding, respectively to the dimensionless generalized 

concentrated force F
c
 at point (0,0); and to the uniformly distributed force F

d
 over the surface  

of the plate; The expressions obtained are: 

fi
∗c = Fc b3

aE H4
wi

∗ 
0
∗ ,

0
∗ .   

 
(21) 

fi
∗d = Fd b4

EH4     wi
∗(∗,∗)


d∗d∗.   

 
(22) 

As mentioned in reference [3], the above system permits one to obtain explicitly the basic 

function contributions 2, 3,…, 18 of the second and higher functions, corresponding to a given 

value of the assigned first basic function contribution a1 if *
irk , for ri  , is assumed to be 

negligible compared to *
rrk , and direct solution was as follows:  

εr =
fr
∗ −

3
2

a1
3b111r

∗

krr
∗ − ω∗2mrr

∗
, r = 2,3, … ,18. 

 

(23) 

It was shown in Reference [3] that the accurate explicit analytical solution corresponding 

to the non-linear free and forced vibration cases can be obtained only in the normal modes basis 

of the fully clamped plate considered (MFB). So, the problem of non linear forced laminated 

skew plate will also be formulated in this appropriate basis, using the notation of Reference [3]. 

The simplified theory presented in this subsection focuses on non-linear vibrations of 

plates using a multi-mode approach and taking into account the coupling between the higher 

vibration modes. The solution obtained in Equation (23) makes it possible to get directly the non-

linear frequency response function in the neighbourhood of the first mode. This gives not only the 

displacement at the centre of the plate, as is usually the case, as a function of the non-linear 
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frequency, but also the plate response spatial distribution on its whole area, for each level of 

excitation. The results obtained by this approach, are in good agreement with the experimental 

results in Reference [14]. 

3 RESULTS AND DISCUSSION 

The aim of this section is to apply the theoretical model presented above to analyze the 

geometrical non-linear free and forced dynamic response of skew fully clamped symmetrically 

laminated plates in order to investigate the effect of non-linearity on the non-linear resonance 

frequencies and non-linear fundamental mode shape at large vibration amplitudes. Convergence 

studies are carried out, and the results are compared with those available from the literature 

through a few examples of laminated composite skew thin clamped plates with different fibre 

orientation and aspect ratio. The material properties, used in the present analysis are: Isotropic 

plate and composite laminated plate (graphite/epoxy) has five layers symmetrical angle-ply (45°,-

45°, 45°,-45°, 45°); EL =173 GN/m2; ET= EL/15.4 GLT/ET = 0.79; LT = 0.3.  

Where E, G and  are Young’s modulus, shear modulus and Poisson’s ratio. Subscripts L 

and T represent the longitudinal and transverse directions respectively with respect to the fibres. 

All the layers are of equal thickness. Calculation was made by using 18 functions corresponding 

to three symmetric beam functions in the  direction and three symmetric beam functions in the η 

direction, and three anti-symmetric beam functions in the  direction and three anti-symmetric 

beam functions in the η direction. Table 1 shows the non linear results for a fully clamped 

isotropic square plate subjected to harmonic distributed force f1*
d
=104.45 (F

d
=873.82N/m

2
) 

obtained using a multimode approach. It can be seen a good convergence with results presented in 

reference [3].  

 

Wmax* Reference [3] Present result Error % 

+0.2 0.1475 0.1487 0.81 

-0.2 1.4218 1.4220 0.01 

+0.4 0.7661 0.7671 0.13 

-0.4 1.2596 1.2602 0.05 

+0.6 0.9285 0.9304 0.20 

-0.6 1.2364 1.2377 0.11 

+0.8 1.0476 1.0507 0.30 

-0.8 1.2639 1.2665 0.21 

+1 1.1588 1.1632 0.38 

-1 1.3202 1.3240 0.29 

 

Table 1. Forced vibration frequency ratio /l for a fully clamped square plate subject to 

harmonic distributed force f1*
d
=104.45 (F

d
=873.82N/m

2
). 

 

The variation of non-dimensional nonlinear frequency ratio nl/l with respect to non dimensional 

maximum amplitude wmax/h is evaluated for different skew angle subjected to uniform harmonic 

load is shown in figure 2. The nonlinearity is reduced with increasing skew angle. It can be 

noticed multivalued regions corresponding to the jump phenomena occurring in non-linear 

vibration. 
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Figure 2. Comparison of the Forced response of a fully clamped isotropic square plate subjected 

to harmonic distributed force f1*
d
=104.45 (F

d
=873.82N/m

2
) for different skew angle. 

 

A comparison between results obtained by the explicit model with those obtained using 

the single mode approach for fully clamped laminated composite plate excited by a harmonic 

distributed forces  f1*
d
=10 (F

d
=124.7N/m

2
) was presented in Figure 3. It can be seen a reasonable 

estimate for the amplitude at the centre of the plate. 

 

 

 

 
Figure 3.  Comparison of the forced response of a fully clamped composite square plate subjected 

to harmonic distributed force f1*
d
=10 (F

d
=124.7N/m

2
) obtained with explicit method with 

reference [8]. 

 

In the case of fully clamped composite skew plate subjected to harmonic distributed force 

f1*
d
=10 (F

d
=124.7N/m

2
) with aspect ratio equal to 1, the effect of increasing skew plate on the 

nonlinearity was clearly exhibited in figure 4.  The nonlinearity decreases with increases skew 

angle. For skew angle =45° it decreases about 10% compared with the rectangular case. 

 

 

 

 

Reference [8] 

Present result 

W
*
max 

*/*l 

W
*
max 

*/*l 

=0° 

=30° 

=45° 
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Figure 4. Comparison of the Forced response of a fully clamped composite plate subjected to 

harmonic distributed force f1*
d
=10 (F

d
=124.7N/m

2
) for different skew angle and =1. 

 

The figure 5 shows the effect of the aspect ratio on the fully clamped composite skew 

plate. It can be seen that the increasing of aspect ratio; reduced the non-linearity of the plate. 

 

 

 
Figure 5. Comparison of the forced response of a fully clamped composite skew plate subjected to 

harmonic distributed force f1*
d
=10 (F

d
=124.7N/m

2
) for different aspect ratio  and =30°. 

4 CONCLUSION 

A model using a semi analytical approach based on lagrange’s equations, and the harmonic 

balance method are successively applied for geometrical non-linear, steady state, periodic forced 

vibration of composite laminated skew plates. Good results were found using a single and 

multimode approach to determine the amplitude frequency dependence in the centre of the plate 

by varying skew angle and aspect ratio. It can be seen that the skew angle reduce the effect of the 

nonlinearity, also the increasing aspect ratio decrease the nonlinearity. Good agreement between 

the present results and those found in literature has been achieved. 
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