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ABSTRACT

The vibration and noise of a structure can be mitigated by controlling the power exchange
between the excitation and the remote parts. An implementation is to integrate piezoelectric
materials into the host structure and to design the associated electric impedance in order to
control the energy flow. In this work, built-up structures with periodical piezoelectric shunts
are considered. Major efforts are devoted to develop a rapid and accurate numerical tool
for the evaluation of the energy flow in this kind of built-up structures. In this method, Wave
and Finite Element Method (WFEM) is employed to model the periodic substructures while
Finite Element Method (FEM) is used to capture the non-periodic substructures. A modal
reduction technique is introduced to WFEM accelerate the wave basis calculation. Validations
are presented, attesting the accuracy of he proposed method. An application is given, where
energy flow of a infinite structure with resistive piezoelectric waveguide is presented.
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1 INTRODUCTION

To control the energy transmission through the excitation to the remote parts, one method is to
periodically distribute piezoelectric patches with identical circuits between the source (termed
near-field substructure) and the remote parts (termed far-field substructure), shown in figure
1. This idea was considered in [1] and [2] to reduce the vibration in rotational components in
aero-engine. It has been shown that periodically distributed piezoelectric shunts can control the
localized vibration in near-periodic structures [2] and also can reduce the response to the engine
order excitation in periodic structures [1]. Alternatively, the wave perspective was considered
in [3, 4], where the functions of piezoelectric patches are to reflect the injected waves or to wel-
come the waves and dissipate them. To evaluate the performance of the piezoelectric waveguide
as a component in a built-up structure, a numerical tool for the forced response and energy flow
in these built-up structures are required.

Figure 1: Illustration of the considered piezoelectric-based built-up structures

In this work, a hybrid finite element method (FEM) /wave and finite element method
(WFEM) is developed to determine the forced response and energy flow of built-up structure
with periodic piezoelectric patches. The near-field is supposed to be non-periodic so it is mod-
eled by FEM. The piezoelectric substructure and the far-field are regarded as waveguide and
they are modeled by WFEM. By WFEM, the dynamics of the periodic waveguide would be
analyzed by only considering one segment of it, hence the computation time is saved. The en-
gineering example is shown in figure 2 where a car chassis is considered. The domain near the
engine can be regarded as near-field while the car body connected to the frame can be treated as
far-field. Piezoelectric patches can be periodically bonded to the frame so that it can be treated
as a periodic waveguide.

Specifically, a modal reduction approach is introduced into the WFEM to accelerate the
wave basis calculation. It is useful especially when the DOFs of the cross-session are numer-
ous. Moreover, only the DOFs of the FE modeled near-field will be kept while the ones of the
waveguides will be eliminated eventually. Then the response and energy flow can be obtained
by post-processing in a multi-scale manner. The far-field substructure can be both finite and
infinite, so this method is applicable in both mode-dominated (low frequency ) cases [5] and the
wave-dominated (mid- and high frequencies) cases [6].

In the following sections, firstly the enhanced WFEM is briefly introduced. Then the
way to adapt the WFEM modeled waveguides into the FEM modeled near-field is presented. A
validation is presented where finite far-field substructures are considered and each piezoelectric
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Figure 2: An engineering example of the considered structures

patch is shunted by an identical Resistor-inductor circuit. At the end an application is presented
where the energy flow to a infinite far-field is presented.

2 ENHANCED WAVE AND FINITE ELEMENT METHOD

2.1 Modal condensation of a unit cell

In WFEM, the dynamics of the whole periodic waveguide can be described only by analyzing
one unit cell of the waveguide thanks to Bloch theorem. The dynamics equations of a unit cell
in the periodic waveguide can be formed by any existed FEM package and they write[

Hii Hib

Hbi Hbb

](
qi

qb

)
=

(
0
fb

)
(1)

where superscripts i and b respectively refer to the internal and the boundary DOFs. Split-
ting boundary DOFs on left (subscript L) and right (subscript R) interfaces, it gives qb =(
qT

L qT
R

)T and fb =
(
fT

L fT
R

)T. The terms are illustrated in figure 3. Then the internal
DOFs would be condensed so that equation (1) becomes

Dqb = fb (2)

where
D = Hbb −HbiH

−1
ii Hib (3)

Figure 3: Illustration of the unit cells in a waveguide
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Searching for the inverse of Hii might be time consuming once the number of the internal
DOFs is large. Alternatively, it is better to firstly reduce the dimension of the matrices before the
condensation as proposed by [7]. In their work, the Craig Bampton method for modal reduction
was employed on all the internal DOFs. Here the major concern is that not all the DOFs in
qi is suitable to be transferred to modal space and be reduced. The DOFs associated with
the electric field are better not to be transferred into the modal space. There are two reasons.
Firstly the impedance of the electric circuits need to be changed in the calculations so as to
evaluate the performance under different parameters. If they are transferred to the modal space
it would be difficult to change the corresponding modal impedance for each retained modes
[3]. Otherwise the modal transformation need to be performed once again, after each electric
impedance modification. Secondly, if electric impedance are considered in the shunted circuits,
the dynamic stiffness matrix can no longer be diagonalized by the open-circuit or close-circuit
modal shapes. Consequently the modal coordinates might be coupled with each other due to
non-diagonal damping terms, then simply remove the modes with higher natural frequencies
might induce unexpected errors.

For these reasons, we rewrite array qi into
(
qT

c qT
n

)T where qc represents all the
mechanical DOFs and qn for the electric ones. Then only the DOFs in qc are transferred into
the modal coordinates y by

(
qi

qb

)
=

 qc

qn

qb

 =

Ψ −K−1
cc Kcn −K−1

cc Kcb

0 I 0
0 0 I

 y
qn

qb

 (4)

where Ψ =
[
ψ1 ψ2 · · · ψl

]
. ψk is the kth natural mode of the unit cell with all rest DOFs

fixed (qb = 0 and qn = 0) and the corresponding natural frequencies is ωk. Specifically, ψk and
ωk with k = 1, 2, · · · , l are obtained as the eigenvectors and eigenvalues of(

Kcc − ω2
i Mcc

)
ψi = 0 (5)

Only l modes are kept in Ψ, and the number is less than that of qc. The criterion for the
selection of the retained modes is ωk < 3ωm where ωm is the maximum excitation frequency to
be considered. Introduce the transformation (4) into equation (1), the dynamical equations can
be reduced to Ĥcc Ĥcn Ĥcb

Ĥnc Ĥnn Ĥnb

Ĥbc Ĥbn Ĥbb

 y
qn

qb

 =

 fy

fn

fb

 (6)

where

Ĥcc =

. . .
1− ω2

k + 2jξkωk

. . .

 (7)

Then the electromechanical coupling is already integrated into matrix H in the FEM procedure.
While the electric impedance matrix Z can be introduced by adding relation fn = −Zqn in
equation (6). Eliminating y and qn in equation (6) when no external forces are applied to the
internal DOFs (fy = 0 and fn = 0), we can also obtain the same form as shown in equation (2)
by

D = Ĥbb − ĤbiĤ
−1
ii Ĥib (8)

where

Ĥii =

[
Ĥcc Ĥcn

Ĥnc Ĥnn + Z

]
(9)
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Less computational cost are required because Ĥii is a sparse matrix with a much smaller size in
comparison with Hii.

2.2 Wave basis: a selected set of characteristic waves

According to Bloch theory, the free wave of the form ejωt−kx that travels in the periodic structure
should satisfy the condition

q
(n)
R = λq

(n)
L (10)

while the equilibrium implies that
f

(n)
R = −λf (n)

L (11)

where λ = e−jk∆ describes the amplitude and phase change when the wave propagates from
the left side to the right side of a unit cell. k is the wavenumber and ∆ is the length of a unit
cell. Introduce equation (10) and (11) into (2) and eliminate fL and fR, leads to([

0 σI
−DRL −DRR

]
−
[
σI 0
DLL DLR

])(
qL

qR

)
= 0 (12)

Assembling the displacement and force eigenvectors in the matrix form we obtain the wave
basis

Φ =

[
Φ+

q Φ−
q

Φ+
f Φ−

f

]
(13)

where superscript + and− refer to the data belong to positive and negative going waves respec-
tively. It is not necessary to consider all the N waves, because those strong evanescent waves
nearly have no contribution to the overall response while they cause numerical issues [8, 9].
The m kept waves are those propagating (|λ| = 1) and less decaying (|λ| > τ ), where τ is a
given factor, here is τ = 0.01 is used. Because of the wave selection, the number of waves to
be kept can be different in different frequencies.

3 DYNAMIC STIFFNESS MATRIX OF THE BUILT-UP STRUCTURE

Concerning the analysis of the complete assembled structure, there are 3 major steps, as shown
in figure 4: 1) model the near-field completely by FEM, with no reduction or simplification; 2)
model the far-field waveguide by WFEM and obtained the equivalent reflection matrix; and 3)
model the piezoelectric waveguide and obtain the equivalent mechanical impedance matrix.

Figure 4: Illustration of the modeling process of the proposed method.

After these steps, all the DOFs of the waveguides would be condensed so that the final
dimension of the dynamics stiffness matrix of the built-up structure is equal to the near field
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one. The governing equations then write[
HII HIB

HBI HBB + Heq

](
qI

qB

)
=

(
fI

0

)
(14)

where subscripts I and B indicate the internal DOFs of the near-field and the DOFs connected
to the waveguides respectively. Heq is the equivalent mechanical impedance of piezoelectric
waveguide and it is

Heq =
[
Φ+

f + Φ−
f

(−Λ−Lp/∆p ·Req · +ΛLp/∆p
)] [

Φ+
q + Φ−

q

(−Λ−Lp/∆p ·Req · +ΛLp/∆p
)]−1

(15)
where Req is the equivalent reflection matrix of the far-field substructure. Specifically, it is

Req = −
(
Φ−

q −YΦ−
f

)−1 (
Φ+

q −YΦ+
f

)
(16)

and

Y =
[
Θ+

q + Θ−
q

(−N−Lf/∆f ·R · +NLf/∆f
)] [

Θ+
f + Θ−

f

(−N−Lf/∆f ·R · +NLf/∆f
)]−1

(17)

where R is the reflection matrix at the boundary of far-field substructure. For infinite case it
is a zero matrix. +Λ and −Λ are diagonal matrices consisted of wavenumbers associated to
positive-going and negative-going waves in piezoelectric waveguide respectively. +N and −N
have the same meaning but they are for far-field waveguide. Φ and Θ represent the wave basis
for piezoelectric waveguide and far-field waveguide respectively.

4 VALIDATIONS

A finite solid-element meshed structure is considered, shown in figure 5. It is constructed by
bonding 10 groups of co-located piezoelectric patches onto a uniform host structure excited at
the center. 5 groups of piezoelectric patches are periodically distributed at the right side of the
excitation while five other groups are located on the other side. The structure is clamped on the
right top and free at the left end.

Figure 5: The calculation layout of the finites piezoelectric structure

To establish the wave basis of the piezoelectric waveguides, the proposed modal reduc-
tion approach is employed. All the internal mechanical DOFs have been transferred into modal
coordinates and only 10 modal DOFs are retained. While all the electric DOFs remain in the
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reduced dynamic stiffness matrix. Figure 6 compares the stiffness matrix of a unit cell before
and after the modal reduction in the form log10(| · |). It can be seen in figure 6a that, before
the reduction, the matrix is sparse and large (722 × 722). While after the reduction it tends to
be dense and with a much smaller size (102 × 102). In the condensation process, 90 boundary
DOFs are retained, which means only a 12×12 matrix of the internal DOFs needs to be inverted
after the reduction, otherwise the inverse of a 632 × 632 matrix of the internal DOFs will be
searched.

(a) Before modal reduction (b) After modal reduction

Figure 6: Illustration of stiffness matrix of a unit cell

The dispersion curves of the piezoelectric waveguides are shown in figure 7a. Overall
6 waves are observed after the identification, in which 4 waves (wave index 0, 1, 4 and 5) are
propagating and 2 waves (wave index 2 and 3) are evanescent. Their wave shapes indicate
that wave 0 and 2 are propagating (figure 7b) and evanescent flexural waves in z direction
respectively , wave 1 and 3 are the propagating and evanescent flexural waves in y direction,
wave 4 is the torsional wave and wave 5 is the longitudinal wave.

(a) The dispersion curves (b) wave shape 0: flexural

Figure 7: Wave modal results of the piezoelectric waveguide

With the reduced wave bases of the piezoelectric and far-field waveguides, the proposed
method can be employed to analyze the forced response of the structure. The validation data
come from the full FE model of the whole assembled structure. Two circuits are considered: 1)
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resistor R = 1× 105 Ω; and 2) resistor-inductor R = 10 Ω and L = 2.945 H. The response is
compared between full FE model and the proposed hybrid model, shown in figure 8. The results
of the proposed method are first obtained only on the near-field DOFs. Then the response of
the waveguides are obtained progressively by post-processing. Good agreements can be seen
in both figures. It should be noted that two reduction have been made on different stages. To
obtain the wave basis, a structural-modal reduction was conducted in order to accelerate the
calculation. Additionally, in forced response analysis, a wave-modal reduction was employed
to avoid ill-conditioning. In this validation case, 10 of the overall 632 structural modes are re-
tained in the first reduction and concerning the later reduction only 6 of the overall 45 waves in
the piezoelectric waveguides and 42 waves of the overall 45 waves in far-field waveguides are
kept. The agreement with the full model results indicate that these reductions are accurate and
the proposed method is applicable to solid-element modeling case.

(a) With resistive circuit at 400 Hz (b) With resistor-inductor circuit at 3120 Hz

Figure 8: Validation of the proposed method with full FEM results: displacement of uz DOF of
all the middle line nodes

5 APPLICATION

The proposed numerical tool also enables one to analyze the energy flow and forced response
in open structural system constructed by a near-field and several periodic waveguides. Here an
application is briefly presented. The considered open structural system is obtained by chang-
ing the far-field of the closed structural system used in the validation to infinite. The material
properties, the geometric of near-field and the parameters of a single unit cell of the waveguides
remain the same. Each piezoelectric patch is shunted by an identical resistive circuit, where
resistance R = 1× 104 Ω. The excitation is applied in the center of the near-field, still as same
as it was considered in the validation.

Forced response and energy flow are obtained by the proposed method and presented
in figure 9, where only the data in positive x coordinates are presented due to the symmetry of
the structure. The contribution to the displacement of the evanescent waves can be seen in the
near-field. In the Far-field, propagating waves dominate the response where the phase varies
linearly in space. Through the results of energy flow, the dissipation caused by the piezoelectric
waveguide are clearly illustrated.

To find the desired design of the piezoelectric waveguide, one needs to choose a patten of
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the electric circuit and calculate the power flow with different parameters. Sometimes maybe a
optimization process will be connected. Due to the dual condensation condensations considered
in this method, it is suitable for this kind of repetitive calculation.

Figure 9: Forced response and energy flow in the structure

6 CONCLUDING REMARKS

A multi-scale numerical tool for the forced response and energy flow for piezoelectric-based
structures are proposed in this paper. By means of this approach, the designed 1D piezoelectric
waveguides can be evaluated by considering them as components of a built-up structure. The
major modeling strategy is to model the non-periodic near-field by FEM and the waveguides
by an enhanced WFEM, and then adapt the models of the substructures. The correlation with
full FEM results attests that the proposed method is also accurate to simulate mode-dominated
finite structures. With the advantage in the calculation speed, this method is applicable in the
design process where the calculation is required on numerous sets of parameters.
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