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P. Lépine1,2 , S. Cogan1 , E. Foltête1 and M-O. Parent2
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ABSTRACT

The aeronautics industry have benefited from the use of numerical models to supplement or
replace the costly design-build test paradigm. Dynamic models are commonly calibrated to
obtain optimal fidelity to data. In order to improve calibration methods, we wish to take into
account the unavoidable compensating effects between the parameters which lead to the non-
uniqueness of the responses. An envelope-bound info-gap model will be used to explore the
change in predictions as the the parameter values are allowed to vary for different horizons
of uncertainty. The calibration is considered robust if an acceptable level of fidelity to data is
obtained even in the presence of uncertainty. Our methodology is demonstrated on an example
involving the dynamic response of a clamped plate with progressively reduced thickness.
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1 INTRODUCTION

Model calibration methods improve the correlation between finite element models (FEM) and
measured data. The aim is to obtain the most predictive analytical model despite their incom-
pleteness to describe exactly the underlying physics: most of the parameters should be consid-
ered as uncertain rather than nominal values due to manufacturing and experimental variability.
In this case, a stochastic calibration method should be use.

On the other hand, the calibration convergence can be wrong due to physical compen-
sating effects which lead to fidelity-equivalent solutions. The info-gap theory provides a way to
ensure that the system remains reliable even under these unknown compensating effects. This
paper presents an approach to enhance the robustness of a stochastic calibration method using
the info-gap theory.

2 ROBUST CALIBRATION

2.1 Calibration performances

We wish to compare experimental data results to simulatated outputs. A common metric to
evaluate deterministic calibration performances is the normed Euclidean distance DE:

DE =
n∑
i=1

√
(vai − vmi

)2

vmi

(1)

vm is a vector containing the nominal eigenfrequencies measured (n ouputs) and va
the corresponding vector containing the nominal analytical responses and the same number of
outputs.

Parameters may be considered as uncertain and defined by probability density functions.
In this case, the model now provides uncertain outputs and can be calibrated using stochastic
approaches such as covariance adjustment [? ], Gibbs sampling [? ] and Metropolis-Hasting
algorithm [? ]. The Euclidean distance is not suitable to compare two unknown distributions
whereas Bhattacharya distance DB is relevant to evaluate multivariate features [? ]. This metric
takes into account both the mean-difference and the covariance difference between the two
distributions :

DB =
1

8
(v̄a − v̄m)TΣ−1(v̄a − v̄m) +

1

2
ln(

det(Σ)√
det Σa det Σm

) (2)

with v̄m the vector containing the measured eigenfrequencies mean values and v̄a the
mean vector of the mean analytical responses. The pooled matrix Σ is given by the combina-
tion of Σm the covariance of the experimental eigenfrequencies and Σa the covariance of the
analytical ouputs as Σ = Σa+Σm

2
.

2.2 Info-gap theory

Info-gap theory has its origins in Ben-Haim [2] studying the reliability of mechanical systems.
Since, this approach has been use on a wide range of applications such as climate models [3]
and medical researches [4]. The purpose of info-gap is to provide tools for decision-makers
in order to assess risks and opportunities of a model in light of the analysis of severe lack of
information.

2
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Figure 1. Nested subsets (left) - Robustness curve (right).

In practice, important modeling information may be lacking due to an incomplete un-
derstanding of the underlying physics. Hence, probability density functions are not generally
suitable alone to describe severely uncertain parameters θ.

We introduce the horizon of uncertainty characterized by α. The larger α, the greater the
range of unknown parameter variations i.e. a bigger space is available for uncertain parameters.
Numerical model performances are commonly defined by a function which assess the quality of
the response fidelity. Consequently, a catastrophic failure may appear for one set of uncertain
parameters sampled from the previous space.

Let’s consider several horizons of uncertainty αi, the function that yields the worst case
model predictions for a given horizon α is called R̂ and calculated as follow [5] :

R̂(α) = max
θ∈U(α,θ̃)

R(θ) (3)

θ̃ is the calibrated best-estimate parameter values of the simulation model. The robust-
ness function expresses the greatest level of uncertainty at which performance remains accept-
able.

α̂ = max{α : R̂(α) ≥ Rc} (4)

with α̂ the maximum horizon to which info-gap uncertainty model is allowed to expand
as long as minimal requirements Rc are satisfied.

The figure 1 explains in a schematic way the method to compute robustness curve [6].
The unknown parameters are u1 and u2. At the first step αA, we consider no uncertainty thus
the space contains a single point A which is necessarily the worst case. The respective perfor-
mance R(u1A, u2A) is noted on the robustness curve on the right. Second step, the horizon of
uncertainty is increased to αB. In the space defined by αB, the worst case can be found using a
factorial design or by optimization [7]. The algorithm returns the worst case B and report it on
the robustness curve. The procedure can be repeated for as much nested subsets required.
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3 NUMERICAL APPLICATION

A new generation of ceramic matrix composite (CMC) turbine blades have been developed [8].
These materials show high resistance to extremely high temperature (1000◦C), low density and
a good fracture toughness compared to conventional metallic alloys.

The approach developed previously is applied to a CMC plate perfectly clamped with a
progressively reducing thickness. The plate is itself divided into three isotropic material parts
to represent physical heterogeneity due to the industrial process. Differences between the ex-
perimental results and the numerical outputs will be analyzed through the first three eigenfre-
quencies of the structure.

Material 3Material 1 Material 2

Figure 2. Material properties distribution.
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10 mm

Figure 3. Plate dimensions.

The system is studied through material 1 and material 2 Young’s Modulus, noted re-
spectively E1 and E2. The range of parameters E1 and E2 values is [20 GPa;40 GPa], divided
into a 20×20 grid. Thus, 300 Monte-Carlo sampling are achieved with NASTRAN for each
combination of parameters using these values as mean. The parameters variance are defined as
10% of the corresponding mean values.

For the simulated test data, 500 experiments are sampled in the same way with E1 =
E2 = 30 GPa and their variances σE1 = σE2 = 3 GPa. No model form error is added between
the two samples. The nominal exact outputs are ν1 = 18.15 Hz, ν2 = 50.64 Hz and ν3 = 78.25
Hz.

The error surface responses are plotted in the space of the two parameters (Figure 4).
The contours illustrate fidelity-equivalent solutions and define satisfying boundaries. The best
performance marker stands for the global minimal distance found in the discrete space. As
expected, this marker totally coincides with the experimental parameters marker for both dis-
tance metrics. In this case, the corresponding couple of parameters provides exact and optimal
solutions.

In Figure 4(a), there is a slender space where the error remains below 0.2%. It means
that deterministic calibrating algorithms can find acceptable set of parameters quite far from the
actual experimental parameters. These compensating effects are inevitable even in the absence
of bias in the model prediction. In Figure 4(b), the isocontours create nested circles which the
lowest error in located in the center. In this case, stochastic calibration should provide relevant
updated parameters.
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Figure 4. Euclidean and Mahalanobis distances.
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4 CONCLUSION

This paper proposes a framework to motivate the robust calibration process. In the case study,
material parameters have been considered uncertain and the compensating effects between them
as a lack of knowledge. Successful updating provides parameters which minimize the error be-
tween simulated experiments and analytical outputs while taking into account unavoidable com-
pensating effects. Two calibration metrics have been investigated, in particular a deterministic
euclidean error as well as the statistical Bhattacharyya error.
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