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ABSTRACT

Composite materials are widely used in the aerospace industry, for their low mass and high
stiffness, however, these characteristics tend to increase noise transmission. Sound protection
must therefore be added, in the form of porous material layers. Uncertainties may affect both
the structural and sound package parameters. It is therefore important to assess the influence
of these uncertain parameters on the sound transmission properties of the assembly. The sound
transmission loss through a composite plate-foam assembly is first computed with the transfer
matrix method. The effect of uncertainty of several parameters such as the porosity, flow resis-
tivity and mechanical parameters is then analysed with the FAST (Fourier amplitude sensitivity
test) method. The effect of adding a thin screen at the interface between the porous and air is
also investigated.
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1 INTRODUCTION

Noise transmission is often a major concern in the industry. Composite structures are known to
have lower acoustic performance than their metallic counterparts, but their high stiffness to mass
ratio makes them more and more used in aerospace applications. On of the most frequently used
construction is the sandwich one, with stiff skins constraining a softer, shearing core. Analytical
models of sound transmission have been proposed in the literature [1, 2]. Some kind of acoustic
treatment is then needed to enhance the transmission loss. Porous materials such as fibreglass
are commonly employed for this purpose, which can be modelled with the Biot model [3, 4].
Sometimes a thin screen can be glued to the porous material to protect it on the transmission
side.

Some variability always occur when modelling the transmission loss of structures with
noise treatment, due either to uncertainty in the parameter measurement, or to design latitudes
allowing for optimisation. It is therefore of utmost importance to assess the effect of this vari-
ability on the model output, and estimate the sensitivity of it with respect to each uncertain
parameter. Several methods have been proposed for this purpose, one of the most popular being
the evaluation of Sobol indices [5]. The Fourier Amplitude Sensitivity Test (FAST) method
[6]has been proposed to accelerate the computation of these indices and already used success-
fully for acoustic and poroelastic applications [7].

We propose here to use the (FAST) method to investigate the effect of several parameters
of a plate-porous assembly such as the one shown on figure 1. This paper is structured as
follows. The FAST method is first presented in section 2. A model of transmission loss through
infinite plane assemblies of composite a porous materials based on the transfer matrix method
is presented in section 3. Finally some results are discussed in section 4.

Sandwich plate

Porous layer

Thin screen

Incident
 sound

Transmitted
sound

Figure 1: View of the studied configuration. The influence of the presence of a limp screen on
the transmission side is studied

2 GLOBAL SENSITIVITY ANALYSIS: THE FAST METHOD

In the analysis of variance technique, a parameter’s influence on the model output is quantified
by the impact it has on the variance in the given design range. In the following development, a
generic mathematical model is considered. A model is a real valued function f defined overKn,
whereK = [0, 1]. With appropriate scaling and translations, any model defined over continuous
ranges of parameters can be represented that way.

For a given model f linking input parameters x = (x1, ...xn) to a scalar output y = f(x),
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there exists a unique partition of f so that

y = f(x1, x2, ...xn) = f0 +
n∑
i=1

fi(xi) +
∑
i<j

fij(xi, xj) + ...+ f1...n(x1, ..., xn) (1)

provided that each function fI involved in the decomposition has zero mean over its range of
variation. The decomposition given by equation 1 is called the Hoeffding decomposition or
high order model representation (HDMR) [8].

For a given set of indices I = {i1, . . . , in}, the partial variance is therefore the variance
of fI

DI =

∫
K|I

fI(xI)
2dxI (2)

the sensitivity index relative to the set I is expressed as the ratio of the variance of the function
fI to the total variance of the model:

SI(I) =
DI

D
. (3)

The computation of all the 2n sensitivity indices is needed to represent completely the
model, however this becomes quickly a very costly task in terms of computational time, as they
have to be evaluated by numerical integration. However, most information about a parameter’s
influence can be found in the first-order sensitivity index and the total sensitivity index, which
can be computed more efficiently with the FAST method.

For a given parameter i ∈ [1, n], the main effect (ME) is then the sensitivity index
relative to the 1-dimensional function fi.

The first-order index represents the share of the output variance that is explained by the
considered parameter alone. Most important parameters therefore have high ME, but a low ME
does not mean the parameter has no influence, as it can be involved in interactions.

The idea of the FAST method is to avoid the evaluation of the n-dimensional integrals
needed for the computation of the fi functions, and replace them by a single 1-dimensional
integral along a space-filling curve in the design space. This curve is defined so as to be periodic
with different periods relative to each parameter. Saltelli [9] propose the sampling function
defined by:

xi =
1

2
+

1

π
arcsin (sin (ωis+ ϕi)) (4)

The frequencies ωi are integers chosen so as to minimize interference between parameters[10].
The frequencies are said to be free of interference up to order M if all linear combinations

n∑
i=1

αiωi 6= 0 (5)

where αi ∈ Z and
∑n

i=1 |αi| < M .
As all frequencies are integers, the resulting function is 2π-periodic with respect to

variable s. The sampling is then done using N > 2ωn + 1 samples in the [0, 2π] interval.
Calling yk = f(xk) the model output on each sample, the discrete Fourier transform ŷk can be
computed.

The total variance of the function in the design space is computed with Parseval’s theo-
rem as

D =

∫
K

f 2(x)− f 2
0dx ≈

N∑
k=1

y2k =
N∑
k=1

ŷ2k (6)
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The contribution of parameter i will then be:

Di =
M∑
k=1

ŷkωi
(7)

3 THE SIMPLIFIED TRANSFER MATRIX METHOD

The sound transmission loss through a multilayered structure composed of plates, air gaps and
poroelastic materials can be computed with the transfer matrix method (TMM). This method
was first proposed by Brouard et al. [11] and extended by Allard and Atalla [4]. We shall use
here a simplified version presented by Hu [12] valid for limp poroelastic materials. The acoustic
behaviour of the structure can be represented with only the fluid pressure p and normal velocity
v as state variables. These two variables are defined in each point in the fluid layers, and on
each side of the solid layers. Each layer can be represented by a 2 × 2 matrix linking the state
variables on one side to those on the other side, and a global transfer matrix can be obtained by
multiplying all these matrices together. The transfer equation then reads:(

pL
vL

)
=

(
T11 T12
T21 T22

)(
pR
vR

)
, (8)

where indices R and L stand for right and left sides of the structure. Waves on each side can be
decomposed in positive- and negative-going waves, which can be written :

pR = p+R + p−R and pL = p+L + p−l . (9)

According to the pressure-displacement relation in the fluid, the normal velocities are:

vR = Y0(p
+
R − p

−
R) and vL = Y0(p

+
L − p

−
l ), (10)

where Y0 = cos θ/ρ0c0 is the characteristic admittance of the surrounding fluid.
This leads to rewriting equation 8 asp

+
L + pL = T11(p

+
R + p−R) + Y0T12(p

+
R − p

−
R)

p+L − pL =
T21
Y0

(p+R + p−R) + T22(p
+
R − p

−
R)

. (11)

We will be studying transmission of a plane wave incident from the left side, whose
interaction with the structure creates a reflected wave into the left side, and a transmitted wave
into the right side. In that case, no negative-going wave will propagate in the right side. The
acoustic transparency is defined as the ratio of transmitted to incident acoustic intensities, which
reduces to

τ =

∣∣∣∣p+Rp+L
∣∣∣∣2 (12)

in the case of identical fluids on each side of the structure. Solving the system in equation 11,
we get

τ(ω, θ) =
1

4

∣∣∣∣T11 + T12Y0 +
T21
Y0

+ T22

∣∣∣∣2 . (13)

The diffuse field transmission loss is then obtained by performing a weighted average
of the transparency over an angular range. The full range [0;π/2] is retained here. In that case,
we get the diffuse field transparency:

τd(ω) = 2

∫ π/2

0

τ(ω, θ) sin θ cos θdθ. (14)
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The transmission loss (TL) is then defined as

TL = −10 log10 τd. (15)

The transfer matrices for a sandwich plate and a limp poroelastic material are derived in
the following subsections. Due to the forced nature of the excitation, the transverse wavenumber
kt = ω

c
sin θ and the pulsation of the incident wave ω are conserved across the whole system.

3.1 Transfer matrix of a sandwich plate

The transfer matrix of a general plate can be obtained from its constitutive equation in presence
of forced loads. When excited by a plane wave with frequency ω, the plate will vibrate and
radiate one acoustic wave on each side, respectively reflected and transmitted. The constitutive
equation can be put under the general form

Zv = pL − pR, (16)

where Z, a linear operator, is the impedance of the plate. The sound field on the left side of the
plate is pL and on the right side it is pR.

The continuity of normal speed between the surrounding fluids and the plate imposes
vL = vp, hence (

pL
vL

)
=

(
1 Z
0 1

)(
pR
vR

)
(17)

For a sandwich plate, the constitutive equation is given by Mead [1], with five main
parameters, namely skin bending stiffness Dt, overall bending stiffness B, damping η, surface
mass m and shear stiffness g. After minor corrections, this reads:

Dt(1+ iη)∇6w−g(Dt+B)(1+ iη)∇4w+m
∂2w

∂t
−mB

N

∂2

∂t2
∇2w = (∇2−g)(pL−pR), (18)

where w = v/iω is the normal displacement of the plate. In the considered frame where a
forced wave is imposed on the plate with a wavenumber kt = ω

c
sin θ, the spatial derivative

operator∇ can be replaced by −ikt. This leads to the following expression of the impedance

Z(ω, θ) =
Dtk

6 + g(Dt +B)k4 −mω2k2 −mgω2(1− ν2)
iω(k2 + g)

. (19)

For sandwiches made of isotropic materials and identical skins, the skin bending stiffness is
Dt = Eh3s

6(1−ν2) the overall bending stiffness is B = Eh2chs(1 + hs
hc

)2/2 and the shear stiffness is

g = Ghc

(
1 + hs

hc

)2
. This expression is equivalent to that of a thin plate if the shear stiffness is

infinite.

3.2 Limp poroelastic model

Poroelastic materials can be modelled with the Biot-Allard model, taking into account wave
propagation in the fluid and solid phases. However, if the material is especially limp, like
fibreglass, it can be possible to neglect the solid part and model it as an equivalent fluid with
complex and frequency dependent parameters. The wave propagation equation in the porous
layer reduces to one scalar equation[4]

∆p+
ρ̃limp

K̃eq

ω2p = 0, (20)

5



DYNCOMP’2015 2-4 June 2015, Arles (France)

where ρ̃limp is the equivalent density and K̃eq the equivalent bulk modulus of the fluid repre-
senting the porous material. These two quantities are complex and frequency dependent. Their
expression is given in chapter 5 of reference [4]:

K̃eq =
γP0

φ
(
γ − γ−1

K

) (21)

(22)

ρ̃limp = −
ρ20 − 1

φ2
(ρ1 + φρ0)(

iB
ω

+ α∞φρ0)

ρ1 − 2ρ0 + φρ0 + 1
φ2

( iB
ω

+ α∞φρ0)
(23)

where the coefficients K and B can be expressed as

K = 1 +
8µ0

iωPrΛ2
thermρ0

√
1 + iω

PrΛ2
thermρ0

16µ0

(24)

(25)

B = σφ2

√
1 + 4iω

α2
∞µ0ρ0

(σΛviscφ)2
. (26)

The parameters Pr, µ0, P0 and ρ0 are respectively the Prandtl number, the dynamic viscosity,
the bulk modulus and the density of air, whose reference values at 20oC are given in table 1.

The porous material is described by six characteristic parameters, namely the porosity φ,
the flow resistivity σ, the static tortuosity α∞, the viscous and thermal dissipation characteristic
lengths Λvisc and Λtherm, and the in vacuo skeleton density ρ1.

Parameter description unit value
Pr Prandtl number - 0.71
µ0 dynamic viscosity Pa.s 1.845 · 10−5

ρ0 density kg.m−3 1.21
P0 reference pressure Pa 101325

Table 1. Reference parameters for air at 20oC.

The complex wavenumber of the wave propagating in the equivalent fluid is, according
to equation 20:

k = ω

√
ρ̃limp

K̃eq

, (27)

and the normal component is kn =
√
k2 − kt.

The transfer equation between two points inside the equivalent fluid separated by a dis-
tance h then writes:(

pL
vL

)
=

 cos(knh) iω
ρ̃limp
kn

sin(knh)

i
kn

ωρ̃limp
sin(knh) cos(knh)

(pRvR
)
. (28)

The previous equation is valid for the wave inside the fluid. When coupled to another
medium, the continuity of normal speed should account for the porosity of the material. If the
other material is a plate or the surrounding air, this conditions reads

φvporo = vm, (29)
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where vm is the normal velocity inside the other medium. The complete transfer matrix of the
porous layer then writes:

Tporo =

(
1 0
0 φ

)
Tp

(
1 0
0 1

φ

)
. (30)

4 RESULTS

The transmission loss of a system composed of a honeycomb panel and a fibreglass layer has
been studied. This was modelled with the analytical model described in section 3, where the
global transfer matrix is

Tbare = TsandwichTporo, (31)

where Tsandwich is given in equation 17 and Tporo in equation 30. A second configuration in
which a thin limp screen is glued to the porous layer at the interface with the receiving cavity is
studied. In this case, the transfer matrix is

Tscreen = Tbare

(
1 iωmscreen

0 1

)
. (32)

In both cases, the diffuse field transmission loss is computed with equation 15 between 100Hz
and 10kHz. All constant parameters are summarised in table 2. We would like to study the
effect of five parameters on the overall transmission loss in the two configurations, namely 2
parameters of the sandwich, core shear modulus and damping coefficient, and 3 parameters of
the fibreglass layer, its porosity φ0, flow resistivity σ and viscous characteristic length Λvisc.
The two characteristic lengths Λvisc and Λtherm are usually correlated, which will be taken into
account by taking Λtherm = 2Λvisc. The variation ranges of these five parameters are shown
in table 3. They are chose as realistic considering both uncertainty in measurement and some
latitude in design.

Results of the FAST analysis are presented in figure 2 for the bare case and 3 for the
case with a screen. The sensitivity indices of each parameter are presented as proportions of the
standard deviation. Some conclusions can be drawn for both cases: none of the considered para-
meters is important in low frequency, while the dominant parameter in HF is the viscous length,
which accounts also for the thermal characteristic length, as they are considered proportional.
The parameters of the structure (G and η) have no significant incidence on the transmission loss
in their considered variation ranges. This is due to the fact that the considered frequency range
is well below the coincidence frequency, which occurs around 19kHz.

The transmission loss variation range is shown for the two cases in figure 4 for the two
cases. It can be seen that the addition of a thin screen reduces the loss in low frequency, but
improves in much more in high frequency. A mass-fluid-mass resonance phenomenon appears
in both cases, where the TL is lower around 500Hz for the screen case, and around 1kHz for
the bare case. In both cases, flow resistivity σ is the dominant parameter between 1000 and
1500Hz. This phenomenon is due to the mechanical resonance of the cavity filled of porous,
analogous to what happens in a double-plate system.

The main difference between the two cases in terms of sensitivity is the preponderance
of porosity between 400 and 1200 Hz when a screen is placed after the porous material. The
overall effect of the screen is globally to increase the transmission loss above 650 Hz, and
reduce the variability of the TL with respect to the investigated parameters.

5 CONCLUSION

A model of transmission loss through composite sandwich plates with attached limp poroelastic
materials based on the transfer matrix method has been proposed in this paper. Its sensitivity

7
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Parameter description unit value
E Skin Young modulus GPa 47
ν Poisson ratio – 0.1

hskin Skin thickness mm 1
hcore Core thickness mm 12.7
m Sandwich surface density kg.m−2 8
α∞ Tortuosity – 1.25
ρ1 Porous in vacuo density kg.m−3 5.5

Λtherm Thermal characteristic length µm 2Λvisc

hporo Porous thickness mm 50
mscreen Screen surface density kg.m−2 0.2

Table 2. Constant parameters considered in this study

Parameter description unit min. value max. value
G Shear modulus of the sandwich’s core MPa 20 40
η Structural damping – 10−3 10−2

φ0 Porosity – 0.85 0.99
σ Flow resistivity kN.m−4.s 10 30

Λvisc Viscous characteristic length µm 25 75

Table 3. Variable parameters considered in this study
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Figure 2. Sensitivity indices in the bare configuration

to several parameters is studied with the FAST method, which allows to efficiently estimate the
sensitivity indices of parameters subjected to uncertainty in a model. However the uncertainty
level of the parameters should be known before the analysis, in the form of a variation range or
a probability distribution.

In the considered case, it has been found that the most important parameters in high
frequency are the viscous and thermal characteristic lengths, as well as the flow resistivity in
an intermediate frequency range around the mass-fluid-mass resonance. The presence of a light
thin screen on the transmission side allows to efficiently increase the TL in high frequency,
though lowering the mass-air-mass resonance, which leads to slightly reduced performance in
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Figure 3. Sensitivity indices in the screen configuration
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Figure 4: Transmission loss variability in the two configurations (average value ± standard
deviation). Red: bare case ; blue: thin screen.

low frequency. In low frequency, the overall variability of the parameters stays low, well below
1dB, because none of the investigated parameters have an effect on the mass of the system, and
the effect of poroelastic materials is usually rather weak in low frequencies.
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