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ABSTRACT

The optimal mechanical and geometric characteristics &yelred composite structures sub-
ject to vibroacoustic excitations are derived. A Finite fBknt description coupled to Peri-
odic Structure Theory is employed for the considered |lay@anel. Structures of arbitrary
anisotropy as well as geometric complexity can thus be nextlbly the presented approach.
Initially, a numerical continuum-discrete approach fomgputing the sensitivity of the acoustic
wave characteristics propagating within the modelled péic composite structure is exhibited.
The first and second order sensitivities of the acousticamaission coefficient expressed within
a Statistical Energy Analysis context are subsequentlivedras a function of the computed
acoustic wave characteristics. Having formulated the ggativector as well as the Hessian
matrix, the optimal mechanical and geometric charactasssatisfying the considered mass, s-
tiffness and vibroacoustic performance criteria are sdaughemploying Newton'’s optimisation
method.
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1 INTRODUCTION

Layered and complex structures are nowadays widely usddnatite aerospace, automotive,
construction and energy sectors with a general increasieney, mainly because of their high
stiffness-to-mass ratio and the fact that their mechawitatacteristics can be designed to suit
the particular purposes. Unluckily however, this highfsggs-to-mass ratio being responsi-
ble for the increased mechanical efficiency, at the same itiohgces high acoustic transmis-
sion through the structure. The need for simultaneouslymging an industrial structure of
minimum mass and maximum static stiffness, while attairgatisfactory dynamic response
performance levels is a challenging task for the modernresgi especially when considering
acoustic transmission through a layered structure whigiedgs on the mechanical and geo-
metric characteristics of each individual layer, resujtima great number of design parameters
to be optimised.

In this work an established wave based SEA approach is emglmyorder to predict
the vibroacoustic performance of a composite layered palted novelty of the work focuses
on the derivation of the first and second order sensitivitynefacoustic transmission coefficient
expressed through SEA with respect to the structural designacteristics of the modelled
structure. The considered design parameters include tiretgrof the mechanical character-
istics, the density as well as the thickness of each indalidtructural layer. Non conservative
structural systems are also modelled by the exhibited @gprdEmploying a three dimensional
FE description of the modelled structure allows for captgrihe entirety of the sound trans-
mitting propagating structural waves, while employing & B&mulation allows for drastically
reducing the computational cost related to calculatingB& parameters and the Hessian ma-
trix for each configuration. Although not discussed in thrky the method is straightforward
to apply to curved structures by expressing the FE strulctnedrices and wave propagation
properties in polar coordinates.

2 ACOUSTIC WAVE SENSITIVITY

2.1 Formulation of the PST for an arbitrary structural segment

A periodic segment of a panel having arbitrary layering ieebg considered (see Fij.with

L,, L, its dimensions in the andy directions respectively. The segment is modelled using a
conventional FE software. The mass, damping and stiffnedgcas of the segmei, C and

K are extracted and the DoF sgts reordered according to a predefined sequence such as:

q= {QI g8 dt 9L 9dr 9LB 9rRB dLT qRT}T (1)

corresponding to the internal, the interface edge and tieefate corner DoF (see Fij. The
free harmonic vibration equation of motion for the modekegment is written as:

[K +iwC — w?M|q =0 (2)

The analysis then follows as id][with the following relations being assumed for the
displacement DoF under the passage of a time-harmonic wave:

~ Qr =€ qr, qr=€ gy 3)
drB =€ “*qLB, qLT =€ “YqLB, qRT =€ “* “YqLB

with ¢, ande, the propagation constants in theandy directions related to the phase differ-
ence between the sets of DoF. The wavenumbgrs, are directly related to the propagation
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Figure 1. Caption of a FE modelled composite layered panel

constants through the relation:

€x = kyLg, €y =kyL, (4)
Considering E@ in tensorial form gives:

I 0 0 0 i
0 I 0 0
0 Ie ‘v 0 0
0 0 I 0
q=|0 0 Ieis= 0 x = Rx 5)

0 0 0 I
0 0 0 Ie i
0O O 0 Ie v

L0 O 0 Ie =iy |

with x the reduced set of Dok = {qr qs qr qLB}T. The equation of free harmonic vibra-
tion of the modelled segment can now be written as:

[R*KR + iwR*CR — w?R*MR]x = 0 (6)

with * denoting the Hermitian transpose. The most practical phaeefor extracting the wave
propagation characteristics of the segment fron6Esgjinjecting a set of assumed propagation
constants,, ,. The set of these constants can be chosen in relation torbetidn of propa-
gation towards which the wavenumbers are to be sought ammidicg to the desired resolution
of the wavenumber curves. Hgs then transformed into a standard eigenvalue problem and
can be solved for the eigenvectomwhich describe the deformation of the segment under the
passage of each wave type at an angular frequency equaldqubee root of the corresponding
eigenvalue\ = w?. It is noted that the computed angular frequency quantities w, + iw;
will have | w; |> 0 implying complex values for the wavenumbers of the propagawvave
types, otherwise interpreted as spatially decaying matrahfrom which the loss factor of each
computed wave type can directly be determined.

A complete description of each passing wave including asdy directional wavenum-
bers and its wave shape for a certain frequency is theretopgir@d. It is noted that the period-
icity condition is defined modulo72 therefore solving E.with a set ofe,, ¢, varying from
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0 to 2t will suffice for capturing the entirety of the structural veasv Further considerations on
reducing the computational expense of the problem are skgclin ]. It should be noted that
only propagating waves will be considered in the subsecarglly/sis.

2.2 Parametric sensitivity

For an undamped structural segment the sensitivity of thleeigenvalues,, can be written as

o\ 0K oM
2N, T< PK M 0\OM 0, 8M) 7b)
0B;08, * \0B;0B; "0B;08;, 9B; 0B; 0B 0p;

+( 0O ox, [ 0 0%,
+x (a@lK AMD%HP (MIK_APMD&,_@

with the sensitivity of the real mode sha 2% to be calculated by the approach exhibited

J
in [2]. The global mass and stiffness matridésK of the structural segment are formed by
adding the local mass and stiffness matrices of individ&a. FEQ7 can be written as

0N T (0K L OM
35 =% (R 55 R~ MWR 55 R) X, (8a)
X, < K 82M Ny OM Ny OM )
= * R-\MVR*———R-R"—- R - R* —R + 8b
25,00, T A R TR T T A AN
T 9 * * axp T 9 * - * %
(8@ R'KR - A,R"MR 85¢+Xp 8ﬁiRKR ApR*MR 95,
. . A, O(wp)
For the conservative system it is known however %ﬁi =3 5, , therefore
0(w,)
ON\p Ow, Owy, &up 1 0\,
_— — = 2 =
08 05 op, T 0B 2,08 2)
ow,
9*N, 28wp Ow, 4w 0w, Puw, 1 ( Pr 28wp &up) (9b)
85]'662 66] 662 paﬁjaﬁz 85]662 2 66j851 66] 662

with w, the angular frequency at which the setgfe, is true for thep wave type described by

: . Ok -
thex, deformation. For the wavenumber sensmvg%ﬁ the following is true

ok, Ok, &up I
op; &up OB cgp OB;
Phy 1 0cpOwpdw, 1 Pu,

8@3@ N Cg,p 8k:p 86] 861 Cg,p 8@86@

with ¢, ,, = % the group velocity associated with the wave typat frequencyw, and the
P

. 0 : : .
quantitiesc, ,,, 8cg,p to be evaluated by the solution of the baseline structursibde
Wp

(10a)

(10b)
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Figure 2: A schematic representation of the SEA power exgbsuand energies for the mod-
elled system.

3 SEA SENSITIVITY ANALYSIS

3.1 The employed SEA model

The impact of the parametric alterations on the vibroacopstformance of the structure under
investigation is exhibited in this section by deriving exgsions for the sensitivity of the SEA
results with respect to the propagating acoustic waves.

The total acoustic transmission coefficienis one of the most important indices of the
vibroacoustic performance of a structure. The system to beefited comprises one acous-
tically excited chamber (subsystem 1) and one acousticadlgiving chamber (subsystem 3)
separated by the modelled composite panel (subsystemi2xdnsidered that each wave type
is excited and transmits acoustic energy independenthy fhe rest, therefore each considered
wave typew = wi, ws...w, propagating within the composite panel is considered aparate
SEA subsystem. No flanking transmission is considered irStB& model. The energy bal-
ance between the subsystems as it is considered within arapach (se€q)) is illustrated
in Fig.2, in which E;, E5 stand for the acoustic energy of the source room and theviegei
room respectively and’, for the vibrational energy of the composite panel. Moreabgris
the injected power in the source room,, P, and P3, stand for the power dissipated by each
subsystem and?;; is the non-resonant transmitted power between the rooms.

The derivation of an expression for the total acoustic trassion coefficient of the
composite structure by merely accounting for its strudtdymamic behaviour is exhibited in
[4] and reads

W, P
T=> Tt P'l?’ (11)
w=w1 wmc

with 7,, being the transmission coefficient of the wave typgiven as

8p204ﬂ-0’3ad wnw
psw? A(pswn + 2pC0ad.0)

The non resonant transmission coefficient = P53/ P;,. for a diffused acoustic field
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can be written as ing:

- ! A% 0 2 9 sin d9d
Tar (W) = 7(c082 Oppin, — OS2 Orna) /0 /0 liwps + 27 |20( , ¢, w) cos” fsin ¢

(13)
in which # and¢ are the incidence angle and the direction angle of the aiconate respec-
tively and Z, = pc/ cos @ is the acoustic impedance of the medium. The téym. stands for
the maximum incidence angle, accounting for the diffuseréshe incident field. It is hereby
considered that,,., = /2 for all the results presented in the current work. The tefth ¢, w)
is the corrected radiation efficiency term. It is used in otdeaccount for the finite dimensions
of the panel and it is calculated using a spatial windowingemdion technique presented 8]

Eventually the STL of the panel can be expressed as

STL = 10 log,, <l) (14)
T

by definition.

3.2 Parametric sensitivity of the total acoustic transmis®n

In order to formulate the expression of the Hessian matrscdeing the variation of the vi-
broacoustic performance of the structure with respecstdasign parameters, the second order
derivative ofr with respect to the considered set of parameters shouldrbedand expressed
as

or 01, 0Ty
— 15
o5~ 2 a5 B (152)
0% 827'
w nr 15b
aﬁj 5 Z 98,08 98,00 (15b)

while the sensitivity of the STL index can directly be exg@s with regard te as

O(STL) d(STL) ot 10 or

0B dr 0B  In(l0)7 9B (162)
O*(STL)  &(STL) dr 9t 9(STL) &t (16b)
85]861 N 87'2 85] 661 87’ 66j661

10 o9ror 10 0*r
1n(10)7‘2 66] 662 1H(10)7’ (’3@85@

In the following sections the evaluation of B§.is discussed.

3.3 Modal density sensitivity

Using Courant’s formulaq], the modal density of each wave typecan be written at a propaga-
tion anglep as a function of the propagating wavenumber and its correipg group velocity
cy

k()
"0 = ey (0,0) )

6
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The angularly averaged modal density of the structure ietbee given as

Ny (W) = /OW Ny (w, @) do (18)

Thanks to the chain differentiation rule the first and seconmlgr derivatives of the modal den-
sity for each wave type with respect to design variales; can be expressed as

Onw (W, ¢) _ Inw (w, ¢) Okw (w,¢) | Inw (w, §) Icg,uw (w, P)
0B; Okw (w,¢)  0B; Ocgw (w, ¢) 0B;
_ A Okw (w,¢)  Akw (w, ¢) sgN(cg,w (W, §)) Ocg,w (w, ¢) Ikw (w, P)
2n2|cgw (W, @) | OBi 2m2|cg,w (w, 0) 2 Okw (w,¢)  0B;
?ny (w, P) _ 1y (w, @) Ok (W, @) Okw (W, @) Ony (w, @) %k (w, D)

3B;0B;  Okw (w,0)® 9B, 0B Okw (w, )  0B;0B;
nw (w,¢) dcgw (w, ) Iegw (W, ) | Onw (w,¢) 9*cquw (w,9)
Jcg,w (W, ¢)2 0B; 9B; Ocg,w (w, @) 0B;08;

A kw (w, ¢) o Akw (W, ¢) sgNeg,w (@, §)) <30g w (w, @) ) Okw (w, ¢) Okw (w, @)
(

(19a)

(19b)

 2mcgu (@, @) | 0B;08; 2[gu (w0, 9) [ Db (0, 9) o8,  op;
_ Ak (w, ¢) sgn(cg,w (w, ¢)) (82% w (W, @) Oky (w, @) Okw (w, @) 80(] w (@, 9) 8 kw (w, ¢)>
27T2‘cg7w (w, ¢) |2 Ok (w, (25) 8@7 9B; 8k‘w (w, 9) aﬁjaﬂl

while for the spatially averaged modal density

ony (W) ony, (w, 9)
o=, (202

Pny (w) _/” Py (w, ¢)
9p;08;  Jo 98,08

suggesting that the modal density sensitivity can be espremerely by

do (20b)

e The sensitivity of the characteristics of the waves tranglivithin the considered struc-
ture with respect to the structural design (already detezohin Se@).

e The sensitivity of the modal density with respect to the ahteristics of the waves trav-
elling in it.

A similar approach can be followed for computing all the remray necessary SEA
quantities.

3.4 Radiation efficiency sensitivity

In order to avoid the computationally inefficient frequeranyd directional averaging of the

modal dependent radiation efficiency sensﬂn&ty’mw—(d)) it is practical to employ ex-

pressions introducing a direct wavenumber dependenceam such as the ones exhibited in
[1, 8, 9]. For a generic periodic structure including discontiregtthe assumption of sinusoidal
mode shapes is no longer valid, therefore the radiationefity should be calculated directly
from the PST derived wave mode shapes. The radiation effigiexpression as derived it][

can therefore be employed. For continuous structures, rsloglges of sinusoidal form can be
assumed in order to avoid any FE discretization errors irstiietion. The set of asymptotic
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formulas given in 9] can be used for computing the averaged wavenumber depteradigtion
efficiency of the panel as

1
Oradw = ——— 1 < 0.90 (21a)
V1= p?
L,+ L 1 2
o = T2y (ln (’” ) S ) 1> 1.05 (21b)
mpukLyLy\/p? — 1 pw—1 u?—1
Oradw = (0.5 —0.15min (L, L,)/ max (L,, L,)) \/kmin (L,, L,) p=1 (21c)

2 2\ 1/2
kZ + k:y

with . = 5

, Wherex = w/c is the acoustic wavenumber. In the regi@f0 <
K

u < 1.05 a shape preserving Hermite interpolation function is eygdcassuring the continuity
and double differentiability for the entire spectrum of the,,, expression. The sensitivity
expressions for the radiation efficiency of the panel carefioee be derived as a function of
the propagating flexural wavenumbers by Zg.while the interpolation function is used for
expressing the sensitivity of.,, ., for the remaining spectrum.

4 NUMERICAL CASE STUDIES

In order to validate the exhibited optimisation approachagaymmetric sandwich panel com-
prising two facesheets and a core is modelled in this seclibe lower facesheet has a thickness
h;=1mm and is made of a material having ;=3000e °kg/mm’, £, = 70GPa and a Poisson’s
rationv;=0.1. The upper facesheet has a thickness equaj#®mm and is made of the same
material as the lower facesheet. The core has a thickinesOmm and is made of a mate-
rial with p,, »=50e °kg/mn?, £, = 0.07GPa and»,=0.4. Three FEs are used in the sense of
thickness in order to model the structure. All computatimese conducted using the R2013a
version of MATLAB®.

4.1 Structural design optimisation of the layered structue

As discussed in Sec.2, the criteria to be considered witteroptimisation process of the me-
chanical and geometric characteristics of the panel armdss, stiffness and vibroacoustic
performance. The surface mass of the papés chosen as a representative mass index, the to-
tal acoustic transmission coefficients selected as the vibroacoustic performance index, while
with regard to the structural stiffness and for the sake woifpéicity we will hereby assume
that we are solely interested in the sum of the static flexstrihesses of the pané),,., D,,
expressed in the case of an isotropic composite panel as

2 l7naac

do=23 (Quz =) (22)
=l

with z; the coordinate of the upper surface of layer the thickness direction. The design cost
functions, employed in order to decide the relation between andd, and the corresponding
induced design cost are exhibited in Big.

Additional constraints (e.g. minimum axial and/or flexusaffness, maximum surface
mass e.t.c) can be considered. The constrained optinmzatablem is solved using Newton’s
method.
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Figure 3: Representation of the cost functions employetiwithe current optimisation pro-
cess. Cost function corresponding to: The acoustic trassam coefficient (—), The surface
mass density, (——), The flexural stiffnesg, of the panel ¢ - —)

4.2 Optimal parameters and discussion on the computationadfficiency

The optimisation problem is solved fér = 0.13rad/mm, and the optimal material and geo-
metric parameters that minimise the sum of the costs asmezsén Fig3 are computed as
follows

E, =80.9GPav, = 0.12 h; = 1.19mm p,,, = 1647kg/nt
E, = 110MPa vy = 0.37, hy = 10.53mm p,, » = 14.6kg/m
E3 =58.3GPawv; = 0.19 hs = 1.74mm p,, 3 = 1500kg/nd

It is noted that the only quantities laying on the limits of firedefined constraints which
could potentially further improve the overall structurarfprmance are the Young’s modulus
of the core layel’, as well as the mass density of the upper lgygs. Optimising the struc-
ture in a broadband frequency range can be done by averdgengptimal parameters over
the frequency range of interest or by introducing a weightimerage for the frequency bands
that are considered more important (e.g. frequency of thereal acoustic excitation). The
optimisation process was completed in 8 iterations eachhadlwlasted approximately 78 sec-
onds, resulting in a total computation time of 630s. Thisgasgs that a broadband structural
optimisation is feasible within a few hours, even with a camional computing equipment.

5 CONCLUSIONS

In this work, the optimal mechanical and geometric charésttes for layered composite struc-
tures subject to vibroacoustic excitations were deriveal wave SEA context. The main con-
clusions of the paper are summarised as:

(i) An intense frequency dependent variation of the sensitof the propagating wave
characteristics has been observed as a function of therdekige composite structure. This

9
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also implies frequency dependence of the optimal desiganpeters.

(if) Expressions for the first and second order sensitwitiethe SEA quantities, namely
the modal density and the radiation efficiency of the contpgsanel were derived. The design
parametric sensitivity for each of the SEA quantities, all a® of the acoustic transmission
coefficient were found to be highly frequency dependent. ifiqgact of the design alteration
on the vibroacoustic response was maximised in the vicofithe acoustic coincidence range
for most parameters.

(i) The suggested optimisation process is computatigneidficient, allowing for a
broadband structural optimisation of a layered structara iational period of time, even with
the use of a conventional computing equipment.
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