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ABSTRACT

The optimal mechanical and geometric characteristics for layered composite structures sub-
ject to vibroacoustic excitations are derived. A Finite Element description coupled to Peri-
odic Structure Theory is employed for the considered layered panel. Structures of arbitrary
anisotropy as well as geometric complexity can thus be modelled by the presented approach.
Initially, a numerical continuum-discrete approach for computing the sensitivity of the acoustic
wave characteristics propagating within the modelled periodic composite structure is exhibited.
The first and second order sensitivities of the acoustic transmission coefficient expressed within
a Statistical Energy Analysis context are subsequently derived as a function of the computed
acoustic wave characteristics. Having formulated the gradient vector as well as the Hessian
matrix, the optimal mechanical and geometric characteristics satisfying the considered mass, s-
tiffness and vibroacoustic performance criteria are sought by employing Newton’s optimisation
method.
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1 INTRODUCTION

Layered and complex structures are nowadays widely used within the aerospace, automotive,
construction and energy sectors with a general increase tendency, mainly because of their high
stiffness-to-mass ratio and the fact that their mechanicalcharacteristics can be designed to suit
the particular purposes. Unluckily however, this high stiffness-to-mass ratio being responsi-
ble for the increased mechanical efficiency, at the same timeinduces high acoustic transmis-
sion through the structure. The need for simultaneously optimising an industrial structure of
minimum mass and maximum static stiffness, while attainingsatisfactory dynamic response
performance levels is a challenging task for the modern engineer; especially when considering
acoustic transmission through a layered structure which depends on the mechanical and geo-
metric characteristics of each individual layer, resulting in a great number of design parameters
to be optimised.

In this work an established wave based SEA approach is employed in order to predict
the vibroacoustic performance of a composite layered panel. The novelty of the work focuses
on the derivation of the first and second order sensitivity ofthe acoustic transmission coefficient
expressed through SEA with respect to the structural designcharacteristics of the modelled
structure. The considered design parameters include the entirety of the mechanical character-
istics, the density as well as the thickness of each individual structural layer. Non conservative
structural systems are also modelled by the exhibited approach. Employing a three dimensional
FE description of the modelled structure allows for capturing the entirety of the sound trans-
mitting propagating structural waves, while employing a PST formulation allows for drastically
reducing the computational cost related to calculating theSEA parameters and the Hessian ma-
trix for each configuration. Although not discussed in this work, the method is straightforward
to apply to curved structures by expressing the FE structural matrices and wave propagation
properties in polar coordinates.

2 ACOUSTIC WAVE SENSITIVITY

2.1 Formulation of the PST for an arbitrary structural segment

A periodic segment of a panel having arbitrary layering is hereby considered (see Fig.1) with
Lx, Ly its dimensions in thex andy directions respectively. The segment is modelled using a
conventional FE software. The mass, damping and stiffness matrices of the segmentM, C and
K are extracted and the DoF setq is reordered according to a predefined sequence such as:

q = {qI qB qT qL qR qLB qRB qLT qRT}
⊤ (1)

corresponding to the internal, the interface edge and the interface corner DoF (see Fig.1). The
free harmonic vibration equation of motion for the modelledsegment is written as:

[K+ iωC− ω2M]q = 0 (2)

The analysis then follows as in [1] with the following relations being assumed for the
displacement DoF under the passage of a time-harmonic wave:

qR =e−iεxqL, qT =e−iεyqB

qRB =e−iεxqLB, qLT =e−iεyqLB, qRT =e−iεx−iεyqLB

(3)

with εx andεy the propagation constants in thex andy directions related to the phase differ-
ence between the sets of DoF. The wavenumberskx, ky are directly related to the propagation
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Figure 1. Caption of a FE modelled composite layered panel

constants through the relation:

εx = kxLx, εy = kyLy (4)

Considering Eq.3 in tensorial form gives:
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x = Rx (5)

with x the reduced set of DoF:x = {qI qB qL qLB}
⊤. The equation of free harmonic vibra-

tion of the modelled segment can now be written as:

[R∗KR+ iωR∗CR− ω2R∗MR]x = 0 (6)

with ∗ denoting the Hermitian transpose. The most practical procedure for extracting the wave
propagation characteristics of the segment from Eq.6 is injecting a set of assumed propagation
constantsεx, εy. The set of these constants can be chosen in relation to the direction of propa-
gation towards which the wavenumbers are to be sought and according to the desired resolution
of the wavenumber curves. Eq.6 is then transformed into a standard eigenvalue problem and
can be solved for the eigenvectorx which describe the deformation of the segment under the
passage of each wave type at an angular frequency equal to thesquare root of the corresponding
eigenvalueλ = ω2. It is noted that the computed angular frequency quantitiesω = ωr + iωi

will have | ωi |> 0 implying complex values for the wavenumbers of the propagating wave
types, otherwise interpreted as spatially decaying motionand from which the loss factor of each
computed wave typew can directly be determined.

A complete description of each passing wave including itsx andy directional wavenum-
bers and its wave shape for a certain frequency is therefore acquired. It is noted that the period-
icity condition is defined modulo 2π, therefore solving Eq.6 with a set ofεx, εy varying from
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0 to 2π will suffice for capturing the entirety of the structural waves. Further considerations on
reducing the computational expense of the problem are discussed in [1]. It should be noted that
only propagating waves will be considered in the subsequentanalysis.

2.2 Parametric sensitivity

For an undamped structural segment the sensitivity of the real eigenvaluesλp can be written as

∂λp

∂βi

=x⊤
p

(

∂K

∂βi

− λp
∂M

∂βi

)

xp

∂2λp

∂βj∂βi
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p
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])
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(
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∂βi

[

K− λpM

])

∂xp

∂βj

(7a)

(7b)

with the sensitivity of the real mode shapes
∂xp

∂βj

to be calculated by the approach exhibited

in [2]. The global mass and stiffness matricesM,K of the structural segment are formed by
adding the local mass and stiffness matrices of individual FEs. Eq.7 can be written as

∂λp

∂βi
=x

⊤
p

(

R
∗ ∂K

∂βi
R− λpR

∗ ∂M

∂βi
R

)

xp

∂2λp

∂βj∂βi
=x

⊤
p

(

R
∗ ∂2

K

∂βj∂βi
R− λpR

∗ ∂2
M

∂βj∂βi
R−R

∗ ∂λp

∂βj

∂M

∂βi
R−R

∗ ∂λp

∂βi

∂M

∂βj
R

)

xp+

x
⊤
p

(

∂

∂βj

[

R
∗
KR− λpR

∗
MR

])

∂xp

∂βi
+ x

⊤
p

(

∂

∂βi

[

R
∗
KR− λpR

∗
MR

])

∂xp

∂βj

(8a)

(8b)

For the conservative system it is known however that
∂λp

∂βi
=
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∂βi
, therefore
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with ωp the angular frequency at which the set ofεx, εy is true for thep wave type described by

thexp deformation. For the wavenumber sensitivity
∂kp
∂βi

the following is true
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with cg,p =
∂ωp

∂kp
the group velocity associated with the wave typep at frequencyωp and the

quantitiescg,p,
∂cg,p
∂ωp

to be evaluated by the solution of the baseline structural design.
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Figure 2: A schematic representation of the SEA power exchanges and energies for the mod-
elled system.

3 SEA SENSITIVITY ANALYSIS

3.1 The employed SEA model

The impact of the parametric alterations on the vibroacoustic performance of the structure under
investigation is exhibited in this section by deriving expressions for the sensitivity of the SEA
results with respect to the propagating acoustic waves.

The total acoustic transmission coefficientτ is one of the most important indices of the
vibroacoustic performance of a structure. The system to be modelled comprises one acous-
tically excited chamber (subsystem 1) and one acousticallyreceiving chamber (subsystem 3)
separated by the modelled composite panel (subsystem 2). Itis considered that each wave type
is excited and transmits acoustic energy independently from the rest, therefore each considered
wave typew = w1, w2...wn propagating within the composite panel is considered as a separate
SEA subsystem. No flanking transmission is considered in theSEA model. The energy bal-
ance between the subsystems as it is considered within an SEAapproach (see [3]) is illustrated
in Fig.2, in whichE1, E3 stand for the acoustic energy of the source room and the receiving
room respectively andE2 for the vibrational energy of the composite panel. MoreoverPin is
the injected power in the source room,P1d, P2d andP3d stand for the power dissipated by each
subsystem andP13 is the non-resonant transmitted power between the rooms.

The derivation of an expression for the total acoustic transmission coefficientτ of the
composite structure by merely accounting for its structural dynamic behaviour is exhibited in
[4] and reads

τ =
wn
∑

w=w1

τw +
P13

Pinc

(11)

with τw being the transmission coefficient of the wave typew given as

τw =
8ρ2c4πσ2

rad,wnw

ρsω2A(ρsωηw + 2ρcσrad,w)
(12)

The non resonant transmission coefficientτnr = P13/Pinc for a diffused acoustic field
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can be written as in [5]:

τnr(ω) =
1

π(cos2 θmin − cos2 θmax)

∫ 2π

0

∫ θmax

0

4Z2
0

| iωρs + 2Z0 |2
σ(θ, φ, ω) cos2 θ sin θdθdφ

(13)
in which θ andφ are the incidence angle and the direction angle of the acoustic wave respec-
tively andZ0 = ρc/ cos θ is the acoustic impedance of the medium. The termθmax stands for
the maximum incidence angle, accounting for the diffuseness of the incident field. It is hereby
considered thatθmax = π/2 for all the results presented in the current work. The termσ(θ, φ, ω)
is the corrected radiation efficiency term. It is used in order to account for the finite dimensions
of the panel and it is calculated using a spatial windowing correction technique presented in [6].

Eventually the STL of the panel can be expressed as

STL = 10 log10

(

1

τ

)

(14)

by definition.

3.2 Parametric sensitivity of the total acoustic transmission

In order to formulate the expression of the Hessian matrix describing the variation of the vi-
broacoustic performance of the structure with respect to its design parameters, the second order
derivative ofτ with respect to the considered set of parameters should be derived and expressed
as
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(15a)

(15b)

while the sensitivity of the STL index can directly be expressed with regard toτ as
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(16b)

In the following sections the evaluation of Eq.15 is discussed.

3.3 Modal density sensitivity

Using Courant’s formula [7], the modal density of each wave typew can be written at a propaga-
tion angleφ as a function of the propagating wavenumber and its corresponding group velocity
cg:

nw (ω, φ) =
Akw (ω, φ)

2π2|cg,w (ω, φ) |
(17)
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The angularly averaged modal density of the structure is therefore given as

nw (ω) =

∫ π

0

nw (ω, φ)dφ (18)

Thanks to the chain differentiation rule the first and secondorder derivatives of the modal den-
sity for each wave type with respect to design variablesβi, βj can be expressed as
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(19b)

while for the spatially averaged modal density

∂nw (ω)

∂βi
=

∫ π

0

∂nw (ω, φ)

∂βi
dφ

∂2nw (ω)
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=
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(20a)

(20b)

suggesting that the modal density sensitivity can be expressed merely by

• The sensitivity of the characteristics of the waves travelling within the considered struc-
ture with respect to the structural design (already determined in Sec.2).

• The sensitivity of the modal density with respect to the characteristics of the waves trav-
elling in it.

A similar approach can be followed for computing all the remaining necessary SEA
quantities.

3.4 Radiation efficiency sensitivity

In order to avoid the computationally inefficient frequencyand directional averaging of the

modal dependent radiation efficiency sensitivity
∂σrad,w (ω, φ)

∂βi
, it is practical to employ ex-

pressions introducing a direct wavenumber dependence ofσrad,w such as the ones exhibited in
[1, 8, 9]. For a generic periodic structure including discontinuities the assumption of sinusoidal
mode shapes is no longer valid, therefore the radiation efficiency should be calculated directly
from the PST derived wave mode shapes. The radiation efficiency expression as derived in [1]
can therefore be employed. For continuous structures, modeshapes of sinusoidal form can be
assumed in order to avoid any FE discretization errors in thesolution. The set of asymptotic
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formulas given in [9] can be used for computing the averaged wavenumber dependent radiation
efficiency of the panel as

σrad,w =
1

√

1− µ2
µ < 0.90

σrad,w =
Lx + Ly

πµκLxLy

√

µ2 − 1

(

ln

(

µ+ 1

µ− 1

)

+
2µ

µ2 − 1

)

µ > 1.05

σrad,w = (0.5− 0.15min (Lx, Ly)/max (Lx, Ly))
√

kmin (Lx, Ly) µ = 1

(21a)

(21b)

(21c)

with µ =

(

k2
x + k2

y

κ2

)1/2

, whereκ = ω/c is the acoustic wavenumber. In the region0.90 <

µ < 1.05 a shape preserving Hermite interpolation function is employed assuring the continuity
and double differentiability for the entire spectrum of theσrad,w expression. The sensitivity
expressions for the radiation efficiency of the panel can therefore be derived as a function of
the propagating flexural wavenumbers by Eq.21, while the interpolation function is used for
expressing the sensitivity ofσrad,w for the remaining spectrum.

4 NUMERICAL CASE STUDIES

In order to validate the exhibited optimisation approach, an asymmetric sandwich panel com-
prising two facesheets and a core is modelled in this section. The lower facesheet has a thickness
h1=1mm and is made of a material havingρm,1=3000e−9kg/mm3, E1 = 70GPa and a Poisson’s
rationv1=0.1. The upper facesheet has a thickness equal toh3=2mm and is made of the same
material as the lower facesheet. The core has a thicknessh2=10mm and is made of a mate-
rial with ρm,2=50e−9kg/mm3, E2 = 0.07GPa andv2=0.4. Three FEs are used in the sense of
thickness in order to model the structure. All computationswere conducted using the R2013a
version of MATLABr.

4.1 Structural design optimisation of the layered structure

As discussed in Sec.2, the criteria to be considered within the optimisation process of the me-
chanical and geometric characteristics of the panel are itsmass, stiffness and vibroacoustic
performance. The surface mass of the panelρs is chosen as a representative mass index, the to-
tal acoustic transmission coefficientτ is selected as the vibroacoustic performance index, while
with regard to the structural stiffness and for the sake of simplicity we will hereby assume
that we are solely interested in the sum of the static flexuralstiffnesses of the panelDxx, Dyy

expressed in the case of an isotropic composite panel as

ds =
2

3

lmax
∑

l=l1

(

Ql(z
3
l − z3l−1)

)

(22)

with zl the coordinate of the upper surface of layerl in the thickness direction. The design cost
functions, employed in order to decide the relation betweenρs, τ andds and the corresponding
induced design cost are exhibited in Fig.3.

Additional constraints (e.g. minimum axial and/or flexuralstiffness, maximum surface
mass e.t.c) can be considered. The constrained optimization problem is solved using Newton’s
method.
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Figure 3: Representation of the cost functions employed within the current optimisation pro-
cess. Cost function corresponding to: The acoustic transmission coefficientτ (−), The surface
mass densityρs (−−), The flexural stiffnessds of the panel (− · −)

4.2 Optimal parameters and discussion on the computationalefficiency

The optimisation problem is solved fork = 0.13rad/mm, and the optimal material and geo-
metric parameters that minimise the sum of the costs as presented in Fig.3 are computed as
follows

E1 = 80.9GPa, v1 = 0.12, h1 = 1.19mm, ρm,1 = 1647kg/m3

E2 = 110MPa, v2 = 0.37, h2 = 10.53mm, ρm,2 = 14.6kg/m3

E3 = 58.3GPa, v3 = 0.19, h3 = 1.74mm, ρm,3 = 1500kg/m3

It is noted that the only quantities laying on the limits of the predefined constraints which
could potentially further improve the overall structural performance are the Young’s modulus
of the core layerE2 as well as the mass density of the upper layerρm,3. Optimising the struc-
ture in a broadband frequency range can be done by averaging the optimal parameters over
the frequency range of interest or by introducing a weighting average for the frequency bands
that are considered more important (e.g. frequency of the external acoustic excitation). The
optimisation process was completed in 8 iterations each of which lasted approximately 78 sec-
onds, resulting in a total computation time of 630s. This suggests that a broadband structural
optimisation is feasible within a few hours, even with a conventional computing equipment.

5 CONCLUSIONS

In this work, the optimal mechanical and geometric characteristics for layered composite struc-
tures subject to vibroacoustic excitations were derived ina wave SEA context. The main con-
clusions of the paper are summarised as:

(i) An intense frequency dependent variation of the sensitivity of the propagating wave
characteristics has been observed as a function of the design of the composite structure. This
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also implies frequency dependence of the optimal design parameters.
(ii) Expressions for the first and second order sensitivities of the SEA quantities, namely

the modal density and the radiation efficiency of the composite panel were derived. The design
parametric sensitivity for each of the SEA quantities, as well as of the acoustic transmission
coefficient were found to be highly frequency dependent. Theimpact of the design alteration
on the vibroacoustic response was maximised in the vicinityof the acoustic coincidence range
for most parameters.

(iii) The suggested optimisation process is computationally efficient, allowing for a
broadband structural optimisation of a layered structure in a rational period of time, even with
the use of a conventional computing equipment.
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