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École Centrale de Lyon, Ecully, FRANCE

Email: bensouf.mohamedamine@gmail.com

2Division of Mechanics, Materials and Structures, The University of Nottingham, University
Park, Nottingham, NG7 2RD, United Kingdom
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ABSTRACT

Anisotropic and sandwich structures are used in many engineering areas such as aerospace
and automotive constructions. These types of structures are often used because of their high
stiffness to mass ratios. However these structures oftentimes present a compromise between
their mechanical and vibro-acoustic behaviour. The vibro-acoustic study for the anisotropic
and sandwich structures is well developed during the last years.

There are many methods which allow the computation of the wavenumbers for isotropic
and anisotropic structures. Analytical formulas exist to calculate the wavenumbers of anisotropic
plates based on the Classical Laminate Plate Theory. To take into account shear deformation,
Whitney suggested the formulation of the First-order Shear Deformation Theory (FSDT). A
model for an infinite sandwich panel by including the description of symmetric and antisym-
metric motions was developed. Leppington expressed the radiation efficiency of a rectangular
panel as well as the vibroacoustic response under a reverberant field of thin orthotropic panels.

To deal with the wave characteristics in periodic structures, the Wave Finite Element
Method (WFEM) is used. This spectral formulation is a result of a coupling between the con-
ventional finite element method and the periodic structure theory. Its formulation starts with
the discretization of the studies structure. An eigenvalue problem is then formulated using the
periodicity of the structure. The general theory of the WFE is proposed by Mead and was im-
proved by Zhong and Williams. This approach is then used for predicting the acoustic behavior
of anisotropic plates. It investigates the evolution of radiation efficiency and sound transmission
loss with frequency.

In all presented formulations, the input parameters are deterministic. However for lay-
ered structures, there is a high variability of mechanical parameters. The main novelty of this
paper is investigating the effects of the uncertain mechanical parameters on the acoustic be-
haviour of anisotropic structures, especially in mid- and high frequencies.
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This paper discusses the effect of uncertain parameters on vibro-acoustic behavior, es-
pecially on the Sound Transmission Loss (STL) of composite panels. The formulation presented
is hybridization between spectral, energetic and uncertain methods. The Uncertain inputs pa-
rameters are represented using a parametric probabilistic approach which allows for the sepa-
ration between the deterministic and the stochastic components in the process.

The second order stochastic parameters are developed using the generalized polynomial
chaos expansion. In order to evaluate the outputs, there are two different methods: intrusive
and non-intrusive methods. The efficiency of the approach is exhibited for isotropic panels.
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1 INTRODUCTION

Anisotropic and sandwich structures are used in many engineering areas such as aerospace and
automotive constructions. To deal with this type of structures in high frequencies, the Statistical
Energy Analysis (SEA) is often used to predict the dynamic behavior of structures. The SEA
method is based on the calculation of the energy quantities exchanged between the sub-systems.
In the case of structural wave modelling, waves represent SEA subsystems, and the use of
the SEA consist on evaluating the energy exchange between waves. Before using an SEA
approach, the identification of the propagating waves is first investigated to obtain the spectrum
of the wave dispersion characteristics. There are many methods which allow the computation
of the wavenumbers for isotropic and anisotropic structures. Analytical formulas exist for the
calculation of wavenumbers of anisotropic plates based on the Classical Laminate Plate Theory
[1]. To take into account shear deformation, Whitney et al. [2] suggested the formulation of the
First-order Shear Deformation Theory (FSDT). Dym and Lang [3] developed a model for an
infinite sandwich panel by including the description of symmetric and antisymmetric motions.
A Higher-order Shear Deformation Theory (HSDT), initially conceived in [4] is applied in [5]
for expressing the vibroacoustic response of a structure within an SEA context. Leppington
et al.[6] expressed the radiation efficiency of a rectangular panel as well as the vibroacoustic
response under a reverberant field [7] of thin orthotropic panels.

This paper discusses the effect of uncertain parameters on vibro-acoustic behavior of
composite panels. The formulation presented is a hybridization between spectral, energetic and
uncertain methods. The Uncertain inputs parameters are represented using a parametric prob-
abilistic approach which allows for the separation between the deterministic and the stochastic
components in the process. The second order stochastic parameters are developed using the gen-
eralized polynomial chaos expansion. In order to evaluate the outputs, there are two different
methods: intrusive and non-intrusive methods. The first one consists in projecting the process
using a Galerkin approach to obtain a set of deterministic equations instead of the stochastic
one. The second method is based on simulations of the deterministic model before an adequate
post-processing to evaluate the uncertainty of the output parameters. In this paper, different
methods are presented and discussed.

2 WAVE BASED PREDICTION OF THE VIBROACOUSTIC PERFORMANCE FOR
A COMPOSITE STRUCTURE

2.1 Wave propagation analysis by a 2D Finite Element method

A rectangular periodic composite panel composed by N identical sub-structures is considered.
The dimensions of the panel are : Lx, Ly and h its thickness(see fig.1). Using the conventional
finite element method, a single periodic segment of the composite panel is modeled and the
mass and stiffness matrices are extracted
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Figure 1. A periodic composite panel

The entries for each Degree of Freedom (DoF), of the nodes laying on the same edge of
the segment, say edges Q, R, S and T, are organized in the mass and stiffness matrices so that
the displacements can be written as: u = {uQ uR uS uT}T . Following the analysis presented
in [8] the time-harmonic equation of motion of the segment assuming uniform and structural
damping can be written as: (

K (1 + ηi)− ω2M
)
u = F (1)
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Figure 2. View of the modeled periodic segment with its edges Q, R, S and T

where η is the structural damping coefficient, ω is the angular frequency and F the vector
of the nodal forces. The dynamic stiffness matrix can be written as :

D = K (1 + ηi)− ω2M (2)

therefore equation (1) may be written as:
DQQ DQR DQS DQT

DRQ DRR DRS DRT

DSQ DSR DSS DST

DTQ DTR DTS DTT




uQ

uR

uS

uT

 =


FQ

FR

FS

FT

 (3)

Using periodic structure theory for the modelled segment and assuming a time-harmonic
response the displacements of each edge can be written as a function of the displacements at
one single edge. Taking edge Q as the edge of reference we have:

uR = λxuQ, uS = λyuQ, uT = λxλyuQ (4)
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Using the same theory, the force vectors can be written as:

FR = λxFQ, FS = λyFQ, FT = λxλyFQ (5)

With λx and λy the phase constants which are related to the wavenumbers kx and ky
through the relation:

λx = e−ikxdx , λy = e−ikydy (6)

The displacement vector can therefore be written as:
uQ

uR

uS

uT

 =


I
λxI
λyI
λxλyI

uQ (7)

Assuming no external excitation, the equilibrium conditions along edge Q implies that:

{
I λ−1

y I λ−1
x I λ−1

x λ−1
y I

}
FQ

FR

FS

FT

 = 0 (8)

Eventually, substituting equation (7), (8) in equation (1) we end up with the eigenprob-
lem:

{
I λ−1

y I λ−1
x I λ−1

x λ−1
y I

}
D


I
λxI
λyI
λxλyI

uQ = 0 (9)

2.2 Calculation of the modal density

Using the Courant’s formula [9], the modal density of each propagating wave type w can be
written for each angle φ as a function of the propagating wavenumber (obtained by the WFE
2D 2.1) and its corresponding group velocity cg:

nw (ω, φ) =
A kw (ω, φ)

2π2 |cg,w (ω, φ) |
(10)

where A is the area of the panel and the group velocity is expressed as:

cg (ω, φ) =
dω

dk (ω, φ)
(11)

The averaged modal density of the structure is eventually given as:

nw (ω) =

∫ π

0

nw (ω, φ) dφ (12)
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2.3 Calculation of the radiation efficiency

In order to calculate the radiation efficiency σ (k (ω)) for each propagating wave type, the set
of asymptotic formulas given in [6] can be used in order to compute σ (k (ω)). Within an
SEA context, energy equipartition amongst the resonant modes is assumed so that the radiation
efficiency is expressed as:

σrad (ω) =
1

n (ω)

∫ π

0

σ (k (ω, φ))n (ω, φ) dφ (13)

For a periodic discontinuous structure assuming sinusoidal mode shapes is no longer
valid; therefore the radiation efficiency should be computed directly from the WFEM derived
wave mode shapes. The radiation efficiency expression given in [10] can be employed for this
purpose.

3 EMPLOYING THE GENERALIZED POLYNOMIAL CHAOS EXPANSION (GPCE)
WITHIN THE VIBROACOUSTIC RESPONSE MODELLING

The polynomial chaos expansion is an efficient tool for describing uncertainty propagation in
mechanical systems. It consist on separating between the stochastic components of a random
function and its deterministic components. This theory, developed by Wiener [11], helps to
expand any second order process u (with finite variance) in a series of orthogonal polynomials
as:

u = u0H0 +
∞∑
i1=1

ui1H1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ui1i2H2(ξi1 , ξi2) +
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i2H3(ξi1 , ξi2 , ξi3) + · · ·

(14)

where Hp(ξi1 , · · · , ξip) represents orthogonal polynomial (chaos polynomials) of order p. In
practice, the polynomial chaos expansion is truncated to a finite number of terms. In a compact
form, equation (14) can be expressed as:

u ≈
P∑
i=0

uiΨi(ξ) , G =

p∑
k=0

Ck
M+k−1 =

(M + p)!

M !p!
(15)

where ξ = [ξi1 , · · · , ξip ]T , and M denoting the number of the uncertain parameters.
Since in most applications the stochastic input variables are not normal, Xiu and Karniadakis
[12] proposed a generalized form of Hermite polynomial chaos expansion using other orthog-
onal polynomials in terms of non-Gaussian random variables called wiener-askey. Table 1
resumes usual random variables and their orthogonal polynomials.

Random variable ξ Winer-Askey chaos Ψ(ξ) Support
Continue distributions Gaussian Hermite (−∞,+∞)

Uniform Legendre [a,b]
Gamma Laguerre [0,∞]

Beta Jacobi [a, b]
Discrete distribution Poisson Charlier {0, 1, · · · , }

binomial Krawtchouk {0, 1, · · · , N}

Table 1: Correspondence between the choice of polynomial and given distribution of usual
random variables
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When the input parameters have not a non-Gaussian behavior, the parametrization of the
problem is quite difficult. Rosenblatt [13] proposed a simple transformation of non-Gaussian
distributions to Gaussian ones. Some analytical transformations are mentioned in the following
table:

Distribution Transformation
Uniform (a, b) a+ (b− a)

(
0.5 + 0.5erf(ξ/

√
2)
)

Normal (µ, σ) µ+ σξ
Lognormal (µ, σ) exp(µ+ σξ)

Gamma (a, b) ab
(
ξ
√

( 1
9a

+ 1− 1
9a

)
)3

Exponential (λ) − 1
λ
log
(

1
2

+ 1
2
erf(ξ/

√
2)
)

Table 2. Random variables and their transformations

with erf(x) = 2√
Π

∫ x
0
e−t

2
dt.

4 NUMERICAL VALIDATIONS

This section deals with numerical validations of the proposed formulation. As presented above,
the formulation is a hybridization of an energy based approach, the wave finite element method
and a parametric probabilistic approach. The objective of the approach is identifying the effects
of uncertain parameters on the acoustic and vibro-acoustic behaviour of panels.

4.1 Isotropic honeycomb panel

In order to validate the suggested models, the first case study is evaluating the acoustic para-
meters for an isotropic honeycomb panel. The mechanical properties of facesheets and the core
are mentioned in Table 3:

E (Pa) ρ (kg/m3) thickness (m) Poisson’s ratio Structural damping
Facesheets 49 · 109 1600 5 · 10−4 0.15 1 %

Core 1.951 · 108 160 6.3 · 10−3 0.15 1 %

Table 3. Mechanical characteristics of facesheets and the core for the isotropic panel

The structure dimensions are : Lx = 0.84 m and Ly = 0.42 m. Regarding the pe-
riodicity of the panel, only one periodic segment with dx = 0.02 (m) and dy = 0.005 (m)
is discretized using the conventional finite element method. The mass and stiffness matrices
are then extracted in order to formulate the polynomial eigenvalue problem exhibited above.
Knowing that the structure is an isotropic one, suggests that the wave properties are the same
in all propagation directions in the structure. Therefore solving the eigenproblem for only one
direction of propagation will suffice for capturing the entirety of the wave propagation data for
the panel.

In order to apply the stochastic process, the mechanical parameters are assumed to be
uncertain with different evolution. Table 4 summarizes the different stochastic parameters and
their distributions. The choice of the Lognormal distribution is used regarding the positivity of
the uncertain parameters.
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Random variables Type of distribution Mean Standard deviation
Young modulus of facesheets (Pa) Lognormal 49 · 109 5%

Density of facesheets (kg m−3) Lognormal 1600 5%
Young modulus of core (Pa) Lognormal 1.951 · 108 10%

Density of core (kg m−3) Lognormal 160 10%
Damping Uniform 0.01 5%

Table 4. Random variables

In this stochastic calculations step, the isoprobabilistic transformations are used to move
from a non-Gaussian distribution to a Gaussian one. Then, the Latin Hypercube Sampling is
performed to apply the stochastic process with lower computation effort.

The wavenumber values for the first flexural wave of the isotropic sandwich structure
are presented in Fig.3. In the same figure the envelope representing the min-max wavenumber
due to the input stochastic parameters, as well as the standard deviation of the wavenumber val-
ues are also exhibited. It should be noted that the out of plane structural motion of the flexural
wave is responsible for transmitting the vast majority of acoustic energy, therefore this will be
the main wave type taken into account during the subsequent analysis. It is observed that the
effect of parametric uncertainties on the flexural wavenumber is small for low frequencies (<
1000 Hz) with a maximum deviation of approximately 1.5%. With an increasing frequency the
effect of the structural parametric uncertainties on the wavenumber becomes more evident, with
the maximum deviation from the mean value being equal to 13.4% at the highest frequency of
the analysis (10 kHz). Considering the standard deviation of the flexural wavenumber values a
piece-wise linearity is observed. The first low frequency region is observed up to frequencies
of 1000 Hz while for higher frequencies a second linear region of a higher gradient is exhibited.
With regard to both the results of the wavenumber as well as its standard deviation values an ex-
cellent agreement is observed between the presented approach and the Monte Carlo simulation
results. It is noted that 4000 samples were considered during the Monte Carlo simulation.

[] []

Figure 3: Wavenumber : (a) mean and min-max envelop, (b) Standard deviation, (-) WFE-
Chaos, (*) Monte Carlo
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[] []

Figure 4: Group velocity : (a) mean and min-max envelop, (b) Standard deviation, (-) WFE-
Chaos, (*) Monte Carlo

The group velocity results for the first flexural wave of the isotropic sandwich structure
are presented in Fig.4. In the same figure the envelope representing the min-max group velocity
values due to the input stochastic parameters, as well as the standard deviation of the group
velocity are also presented. As with the wavenumber results it can be observed that for low
frequencies (< 800 Hz) the impact of parametric uncertainties on the group velocity values
of the flexural wavenumber is insignificant. For higher frequencies the effect of the structural
parametric uncertainties on the group velocity results becomes important, with the maximum
deviation from the mean value being equal to 19.2% at 5 kHz. With regard to the standard
deviation of the flexural wavenumber group velocity it can be observed that it increases up to a
certain frequency where it attains a maximum value; that is at approximately 5000 Hz. Again, as
with the wavenumber results an excellent agreement is observed between the exhibited approach
and the Monte Carlo simulation results.

[] []

Figure 5: Radiation efficiency :: (a) mean and min-max envelop, (b) Standard deviation, (-)
WFE-Chaos, (*) Monte Carlo
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[] []

Figure 6: Transmission Loss: (a) mean and min-max envelop, (b) Standard deviation, (-) WFE-
Chaos, (*) Monte Carlo

5 CONCLUSIONS

The modelling of the vibro-acoustic behaviour of composite layered structures with uncertain
parameters was considered in this paper. The presented approach is a combination of a wave
based SEA approach and a parametric probabilistic approach. The first method consists in
evaluating the wave propagation characteristics within composite structures. A spectral method,
based on the periodicity of the structure studied is presented. Then, the SEA can be applied to
identify the evolution of energy quantities between different sub-structures. In our case, all
waves are considered as substructures. This approach leads to obtain vibro-acoustic indices
such as the radiation efficiency and the sound transmission loss for each considered wave type.
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REFERENCES

[1] J. N. Reddy. Mechanics of laminated composite plates: theory and analysis, volume 1.
CRC press Boca Raton, 1997.

[2] J. Whitney and N. Pagano. Shear deformation in heterogeneous anisotropic plates. A Appl
Mech Trans ASME, 37 Ser E(4):1031–1036, 1970.

[3] C. L. Dym and M. A. Lang. Transmission of sound through sandwich panels. Journal of
the Acoustical Society of America, 56(5):1523–1532, 1974.

[4] JN Reddy. A refined nonlinear theory of plates with transverse shear deformation. Inter-
national Journal of Solids and Structures, 20(9):881–896, 1984.

[5] VS. Sokolinsky and SR. Nutt. Consistent higher-order dynamic equations for soft-core
sandwich beams. AIAA Journal, 42(2):374–382, 2004.

10



DYNCOMP’2015 2-4 June 2015, Arles (France)

[6] F. G. Leppington, E. G. Broadbent, and K. H. Heron. Acoustic radiation efficiency of rect-
angular panels. In Proceedings of The Royal Society of London, Series A: Mathematical
and Physical Sciences, volume 382, pages 245–271, 1982.

[7] F. G. Leppington, K. H. Heron, and E. G. Broadbent. Resonant and non-resonant trans-
mission of random noise through complex plates. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 458(2019):683–704, 2002.

[8] B.R. Mace and E. Manconi. Modelling wave propagation in two-dimensional structures
using finite element analysis. Journal of Sound and Vibration, 318(4-5):884–902, 2008.

[9] R. Courant and D. Hilbert. Methods of mathematical physics, vol. 1. New York: John
Wiley, 1989.

[10] V. Cotoni, R. S. Langley, and P. J. Shorter. A statistical energy analysis subsystem formu-
lation using finite element and periodic structure theory. Journal of Sound and Vibration,
318(4-5):1077–1108, 2008.

[11] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60:897–936,
1938.

[12] D. Xiu and G. E. Karniadakis. The wiener-askey polynomial chaos for stochastic differ-
ential equations. SIAM Journal on Scientific Computing, 24 (2):619–644, 2002.

[13] M. Rosenblatt. Remarks on a multivariate transformation. The Annals of Mathematical
Statistics, 23(3):470–472, 1952.

11


	Introduction
	Wave based prediction of the vibroacoustic performance for a composite structure
	Wave propagation analysis by a 2D Finite Element method 
	Calculation of the modal density
	Calculation of the radiation efficiency

	Employing the Generalized Polynomial Chaos Expansion (GPCE) within the vibroacoustic response modelling
	Numerical validations
	Isotropic honeycomb panel

	Conclusions

