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ABSTRACT 
 

Elastomers are widely used in aerospace, automotive and civil engineering applications 

thanks to their ability to undergoing high strains in large temperature range. To study the 

nonlinearities, several models have been developed in the literature. In this work, a nonlinear 

viscoelastic model at finite strain is developed based upon functional and internal variable 

approaches and the time strain superposition principle (TSSP). Constitutive equations for the 

stress are derived such that the second law of thermodynamic, in the form of Clausius-Duhem 

inequality, is satisfied. Identification of several model’ parameters is studied using 

experimental data of pure shear, simple extension tests on a natural rubber NR and a least 

square minimization procedure. 
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1 INTRODUCTION 

Viscoelastic materials, such as elastomers, are well known by their nonlinear time dependent 

behaviour and large deformation. In the literature, two main approaches are used to determine 

constitutive equations for these materials: functional approach and internal variables 

approach. 

The first one consists on expressing the free energy density as a multiple integral 

functional in terms of the history of deformation (Christensen [1] Pipkin [2]), and then the 

stress tensor is derived from this functional with respect to the strain tensor, taking into 

account the whole thermodynamic assumptions. Whereas, the second one consists on 

expressing the free energy density as a Taylor series in terms of the strain tensor and a set of 

internal variables (second order tensor akin to the second Piola-Kirchhoff stress tensor Simo 

[3] Govindjee [5] or the right Cauchy-Green strain tensor Holzapfel [4] Valanis [6] Schapery 

[7]). The viscoelastic behavior is described with a linear rate equation governing the set of 

internal variables and the thermodynamic restrictions are expressed by the Clausius-Duhem 

inequality. 

 

In this study, a model is developed for nonlinear viscoelastic materials undergoing large 

mechanical process. As a first step, a rheological motivation is investigated. Then, the 

nonlinear viscoelastic model is introduced using a formulation based upon both functional and 

internal variables approaches and the time strain superposition principle TSSP (reduced time). 

Constitutive equations for stress and dissipation are then derived from the thermodynamic 

principles. Finally, an identification procedure of several model parameters is highlighted 

using pure shear and simple extension tests on a natural rubber material (NR). 

2 NONLINEAR VISCOELASTIC MODEL 

2.1 Rheological model 

 

The use of rheological models to describe the mechanical behavior of several materials is very 

widespread. The advantage of such model is its simplicity to obtain the constitutive equations 

of a material. It consists on associating elementary rheological models, namely a Hookean 

element (spring) and a Newtonian fluid element (dashpot). This association could be in series 

and/or in parallel.  

The aim of this section is to develop the viscoelastic model proposed by Simo [3] using 

a rheological model of Zener. For that, we shall investigate some assumptions in the 

definition of internal variables. The viscoelastic model is developed using the concept of 

internal variables; the stress is used as an internal variables and denoted Q . 
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Figure-1: Zener rheological model 

In the rheological model, (figure 1), E  is the spring constant of the Maxwell branch,   

is its dashpot viscosity coefficient and E  is the constant of the spring related to the 

equilibrium state   and   are the total deformation and the stress respectively. The 

deformation of the dashpot of the Maxwell branch is denoted  and the free energy density is 

denoted  . Note that this model is governed by the following equations: 

 

  E E       (1) 
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In Equations (2) and (4) the dot (.) denotes the derivative of this variable with respect to 

time. Note that oE E   is a positive constant, oE  is the instantaneous modulus of the 

material model and E   is the relaxation time constant. The instantaneous potential 

mentioned in equation (4) is the instantaneous elastic energy defined as: 

 21

2
o oE   (5) 

Considering equations (1), (2), (3), (4) and (5), one can obtain the expression of the 

Cauchy stress: 

  
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1 exp
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ot t
dt


  

 
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2.2 Nonlinear viscoelastic model with reduced time 

 

The concept of reduced time was introduced essentially to describe thermorheologically 

simple materials’ behavior. For such materials, their behaviors are affected by the history of 

temperature via a single scalar-valued function called temperature shift function [8] [9]. This 

concept was generalized to investigate thermorheologically complex materials’ behavior by a 

temperature and stress/ strain dependant shift function (Schapery [10], Matsuoka [11] and 

McKenna [12]).  

In what follows a viscoelastic model with reduced time is proposed. 
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The free energy density proposed by Simo [3] is considered. Remember that the 

author postulated a free energy as a Taylor series of the right Cauchy-Green strain tensor and 

an internal variable Q : overstress or non-equilibrium stress (theory of thermodynamic 

internal variables). Simo [3] proposed an evolution law of this variable. Our approach consists 

on resolving this law in order to obtain the expression of the internal variable as an integral of 

the history of deformation/ stress, and then we replace the variable Q  by its expression in the 

energy. So, we obtain a free energy density in a functional form, then we follow the approach 

of Christensen [1] to derive constitutive equations. 

 

The evolution law of the internal variable, the free energy and the reduced time 

function are postulated as follow: 
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In equation (9) o  denotes the initial shear modulus of the material. Considering these 

equations and using the methodology, described above, one can obtain the constitutive 

equation of the second Piola-kirchhoff stress tensor: 
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 G t  is a time dependant exponential decay function, known as the relaxation function. 

The equation of this material characteristic function can be expressed as: 

 

   expi

i i

t
G t  




 
   

 
  (11) 

3 IDENTIFICATION 

The aim of this section is to present the identification procedure of the hyperelastic potential, the 

relaxation function and the reduced time function. 

3.1 Identification of hyperelastic potential and relaxation function 

The identification of the hyperelastic potential  o C  and the relaxation function  G t  equation 

(11) is provided using ABAQUS software and simple extension tests at equilibrium state; i.e. low 

strain rates and relaxation at different levels of deformation. In figure 2 these two functions are 

plotted using experimental data and the one obtained by the identification. Note that the used 

hyperelastic potential is a third order Ogden law [13]. For such material the hyperelastic potential 

is expressed as follows: 
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1..3i i   are the principle stretches of the Cauchy-Green strain tensor and 

; 1..3n nand n    are material’s constants to be identified. 

  

Figure 2: Hyperelastic behavior and relaxation curves  

3.2 Identification of reduced time function  

In order to satisfy thermodynamic principles via Clausius-Duhem inequality the deformation shift 

function  a C  should be a nonnegative function of the right Cauchy-Green strain tensor.  

Two identification approaches was investigated to determine this function. The first one 

consists on postulating that this function as a Mooney-Rivlin potential (Equation (13)). Several 

parameters are then identified using a minimization procedure on the error between experimental 

and theoretical stress values.  

Whereas, the second one consists on expressing the error between theoretical and 

experimental second Piola-Kirchhoff stresses for pure shear test (15) and simple extension test 

(14) as a function of the reduced time  it  at each experimental time it . For a given 

experimental stress the corresponding reduced time is obtained thanks to a minimization 

procedure over the absolute error function (equations (14) and (15)) using MATLAB software. 

Numerical values of the reduced time are obtained for each experimental time. A least square 

fitting procedure is then used to determine the form of the reduced time function. 
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4 CONCLUDING REMARKS 

In this paper, a nonlinear viscoelastic model for rubber-like materials is presented. It’s able to 

predict the elastomers behavior in the whole range of deformation and for several strain rates. 

As a first step, a rheological motivation was investigated to build a one dimensional 

viscoelastic model. Then, a three dimensional model was developed thanks to a combination 

between two approaches: the functional approach and the internal variable approach. The 

dependence of the material’s properties on the strain was illustrated using a reduced time 

instead of the real time which is a function of the deformation history. 

The identification procedure of several parameters of the model was studied. For the 

identification of relaxation modulus/hyperelastic potential and reduced time function, 

experimental data of pure shear and uniaxial extension tests, on a natural rubber NR, was used 

with a combination of ABAQUS and MATLAB software respectively. 
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