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ABSTRACT 

 
For predicting vibratory responses of multi-layered panels over a wide frequency range (100-
10000 Hz), a new laminate theory has been developed. It overcomes the limit of classical zigzag 
laminate theory reached when panels start to undertake transverse resonant behavior. This theory 
mixes the three degrees of freedom (u0, v0, w0) of the thin orthotropic panel, statically equivalent 
to the layup assembly with the three “blocked” degrees of freedom (ui, vi, wi) of each layer, 
considered in relative motion to (u0, v0, w0). A panel made of N layers is thus described by 3(N+1) 
displacement variables coupled by a dynamic operator obtained by assembling plate, cylinder or 
doubly-curved shell thin orthotropic dynamical operators of individual layers depending on 
geometry. The real coupled operator is first analytically solved for all possible (m, n) quantic 
numbers to get eigenvalues and eigenmodes from which is derived the modal density of flexural, 
shear and extensional modes. In a second time, all material properties are made complex and the 
operator is solved again to predict the frequency band-averaged mean damping loss factor of the 
assembly from the complex eigenvalues. Examples of modeling aerospace sandwich or sandwich 
with thin viscoelastic core are discussed against related FEM models. This theory adds a new 
class of SEA subsystems to SEA+ software, extending its modeling capability in addition to the 
introduction of an “extended orthotropic” material described by frequency dependent elastic 
constants. 
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1 INTRODUCTION 

Thin multi-layered elastic shells are components of many industrial products from spacecraft with 
light honeycomb sandwich panels to car dashboards made of stamped viscoelastic steel sheets. 
Their equivalent damping properties are needed for controlling the accuracy of statistical Energy 
Analysis (SEA) prediction of their vibroacoustic behavior as well as their modal density. Due to 
limitation of the classical laminate theory in the high frequency range (HF), a new method has 
been developed for deriving the coupled equations of multilayered shells considered as an 
assembly of 2D thin layers. This theory has been implemented in the SEA+ software and is 
briefly exposed in this document with some validation results. 

2 DYNAMICAL DESCRIPTION OF INDIVIDUAL LAYERS  

In HF, each elastic layer will asymptotically oscillate on its uncoupled { }, ,k k ku v w displacement in 
respectively x, y and z axis, with (x, y) defining the plane of the layer. 
{ }, ,k k ku v w  are the local degrees of freedom of a layer k. The elastic behavior of layer neutral 
fiber is assumed to be orthotropic within (x, y) plane and defined by the following Eij matrix 
relating torque at neutral fiber to strains.  
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The two additional elastic parameters Ez and Gz are added for more flexibility in modeling 
complex design material. Cij coefficients are relating the corresponding forces applied to neutral 
fiber to displacement vector { }, ,k k ku v w  and its spatial derivatives by integrating previous stresses 
defined by Eij over the layer thickness. 
The dynamic of a single layer is then described by its local 3x3 dynamic stiffness operator which 
applies to { }, ,k k ku v w  with expression given here for a flat thin layer: 
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3 DYNAMICAL DESCRIPTION OF GLOBAL LAYER 

When assembling the layers on top of each other, three complementary DoFs are added, 
{ }0 0 0, ,u v w  for describing the low frequency motion when all layers are vibrating in phase with 
no relative motion between them as shown in Figure 1. 

                 
Figure 1. Degree of freedom of the laminate assembly 
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This global layer is assumed to behave as the equivalent "static" shell with Cij elastic matrix 
calculated for phased translational and rotational motions of all layers. Given zk, the relative 
height of neutral fiber of a layer k vs z0, fiber height of layer 0, the actual displacement vector X of 
a layer k is expressed in the axis of global layer 0 as follows: 
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H is the Heaviside function, indicating the motion of each layer is limited to its thickness. 
Its dynamic stiffness is given by (2.1) using equivalent static Cij(k) coefficients. 

4 COUPLING SCHEME OF GLOBAL AND LOCAL LAYERS  

When excited by broadband random force, the layers will progressively decouple and will start to 
have relative motion between them. Assuming all layers will oscillate with common spatial phase 
function gψ , their vectorial motion is then given by: 
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( )zψ  is assumed continuous along transverse section with continuity of displacement at layer 

interface but its derivative 
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 which means interlayer forces will 

be proportional to the difference of their ( )kzψ  motion amplitude. 
The general coupling scheme of global and local layer is sketched in Figure 2 as a generalized 
mass-spring dynamic system where X are vectors with components { }, ,u v w  and stiffness terms 

are 3x3 dynamic operators. As well as mass operator, kL  is the dynamic operator of a layer k 
coupled through springs to global layer described by 0L . To write down the coupled equations of 
the system, we have to provide expression of the coupled springs between global and local layers 
and between local layers. 
The spring operator 0kL  represents the various elastic forces connecting local and global layers.  

0kL  is split into two additive terms: first term 0( , )k x yL  is calculated from the strain energy due to 

the joint work of their respective dynamic operators kL  and 0L . Effectively, a k-layer when 
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moving is developing work within the stress field generated by . The work  is thus 

computed from  representing the relative work of all motions 

. Second term  corresponds to work induced by complementary stresses generated by 
strain and not accounted in the work related to . They are introduced as 

complementary stiffness matrix added to  as the two types of stresses are acting in parallel. 

 
Figure 2. The global-to-local coupling scheme 

The coupling between two adjacent layers k and k-1 is described by the matrix  of which 
components are springs acting on the various layer motions. For example, along z-axis, layers 
may be compressed with a related interface stress . Assuming a continuous linear compression 
strain at interfaces A and B, potential energy is given by:  

 

If the stiffness is calculated between the respective neutral fibers of two adjacent layers, it 
may be calculated following: 

 

The parameter β is depending on chosen  function,  being defined as a stiffness per 

unit m², proportional to .  

 
Figure 3. Left: Sketch for z-stiffness term derivation of Kzz impedance - Right: the four coupling 

impedances introduced in the laminate model 
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Similarly, there are shear forces at interfaces when rotation 
z
ψ∂
∂

 is non-zero. Four different 

springs, Kzz, Kxy, Kxyz and Kws are then acting in the motion Xk when all other layers are blocked at 
their neutral fibers.  

Kxy is the shear spring due to rotation 
z
ψ∂
∂

 and calculated as: 
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The related force applied in the plane (x, y) is given by: 

( )1xy xy k kF K u u −= − −
 

xyF  corresponds to the stress zxσ  or zyσ  and sketched as force ( 1)xz k kS − in next figure. 

 
Kxyz and Kws are respectively due to moment generated by xyF when motion is expressed at neutral 
fiber. The second derivative of this moment gives two shear forces in the transverse section (x, z) 
and (y, z) which opposes to inertial force and act of w components and due to the moment of xyF  
and the moment exerted by the rotation of the section of layer k (Kws stiffness). A last stiffness 

term is introduced. This stiffness is due to differential rotation 1k kw w
x x

−∂ ∂ − ∂ ∂ 
 inducing shear 

stress in (x, z) and (y, z) transverse planes, acting on w’s components of motion. 

5 SOLVING THE DYNAMICAL MATRIX  

From previously defined set of interacting forces, the coupled equations of the multilayered 
motion are reduced to a set of linear relationships given in matrix form (given for two layers 
herbelow): 
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Equations are next expressed in function of the relative local motion of layers k, δ kX . 
Given 0k kX X Xδ = − , (5.1) becomes: 
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 (5.2) 

This matrix makes the dynamic problem easier to solve as the high-valued terms on the diagonal 
of 0L  are removed leading to more stability in the LF range where 0L  operator is predominant.  
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In relative motion, the mass matrix is non-diagonal and is given by: 
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To get a fast analytical solution, displacements in the (x, y) plane are constrained to some global 
shape compatible with boundary conditions such as: 

( , ) sin sin
x y

m x n yg x y
L L
π π

=  in case of simply supported edges. 

When applying the differential operators to ( , )g x y , L and M matrices are becoming functions of 
quantic m and n numbers. For each pair (m, n), an eigenvalue problem is solved, leading, for N 
assembled layers, to a system of 3x(N+1) eigenvalues, imnλ . After extraction, imnλ  are sorted into 
extensional, shear and bending categories by analyzing the relative importance of eigenvector 
amplitudes in each u, v, w directions.  
Finally, the band-averaged modal density and the band-averaged wavenumber are estimated from 
the set of all discrete imnλ  up to some maximal m, n orders limited by the upper frequency of 
calculation.  
The model is made more general by introducing frequency-dependent elastic parameters using 
SEA+ Extended Material definition.  
The full dynamic matrix is then solved twice, the first solve giving the primary solution frequency 
and the second solve providing the final frequency after interpolating elastic matrix at primary 
solution frequency.  
Modal damping loss factor (DLF) is estimated by transforming L  matrix into a complex matrix 
L  using complex Cij matrix of which component related to each layer k are given by:  

( )1k k kCij j Cijη= +  

with kη  the local material damping associated to each layer. 
The mean DLF of the assembly is finally delivered in integrated band format of width ω∆  and 
central frequency cω : 

{ } { }1( ) Im / ReT T
c i i i i

i i
X X X X
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ω

η ω
∆

∆

 =  
 
∑ ∑L L  

where N ω∆  is the number of eigenvalues retained in ω∆  and iX  eigenvector related to imnλ . 

6 APPLICATION TO VARIOUS SYSTEMS 

6.1 Consistency of the formulation 

The self-consistency of the formulation is checked against the calculation of an arbitrary isotropic 
thin plate of uniform material but decomposed into different number of layers for unchanged total 
thickness. A 1 m x 1 m uniform plate of 4-mm aluminum thickness is then modeled as SEA+ 
dynamic laminate plate with selected thickness distribution defined in next table. 
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Case Type #Layer t1 (mm) t2 (mm) t3 (mm) t4 (mm) t5 (mm) Total t mm
P0 uniform 1 4 4
P1 Laminate 1 4 4
P2 Laminate 2 2 2 4
P3 Laminate 3 1 0.5 2.5 4
P4 Laminate 4 1 1 1 1 4
P5 Laminate 5 1.5 1 0.25 1 0.25 4  

Table 1. Consistency test of the formulation modeling same plate with different dynamic laminate 
settings (P0 is the reference plate result modeled as 4-mm uniform SEA+ plate) 

Figure 4 shows all models are given same eigenfrequencies, modal density and mass except 
out of resonances where modal density is interpolated differently between uniform and 
laminate modeling.  

  
Figure 4. Left: modal density of 4mm-Al plate modeled as uniform and as dynamic laminate with 

different thickness distributions - Right: related mass of all plates 

6.2 Aerospace sandwich flat plate structure 

Case C1 is a 1 x 1 m² flat plate made of sandwich construction with two 1-mm aluminum skins 
and 10-mm NIDA core with G = 200 MPa, E = 3MPa and cρ  = 60 kg/m3.  
SEA+ calculation is compared with three FEM simulations with NASTRAN NX solver.  

• C1 "PSOLID1" FEM model, skins are modeled using 2D-plate elements and glued to the 
core meshed with 3D-PSOLID elastic elements. PSOLID1 is simply-supported on edge of 
only one skin. 

• C1 "PSOLID2" FEM model, same model than PSOLID1 but simply-supported on edges of 
the two skins.  

• C1 "PCOMP" FEM model, both skins and core are modeled with 2D PCOMP plate 
laminate elements within a single 2D-plate and with simply-supported edges. 

Real eigenmodes are extracted from FEM models by NASTRAN NX SOL103 solver and 
imported in SEA+ Virtual SEA solver [1] [2] [3] [4] to calculate related SEA parameters: modal 
density, wavenumber and mean input mobility. They are then compared to corresponding SEA+ 
Dynamic Laminate outputs. Figure 5 and Figure 6 show good agreement between SEA and both 
PCOMP and PSOLID FEM models for modal density and conductance (real part of driving point 
mobility). Mid to high frequency slopes of both flexural modal density and mobility spectra due 
to core shear are well-reproduced by SEA+ model. Shifting from PCOMP to PSOLID FEM 
models increases the first resonance frequencies provided by PCOMP. This is observed in the two 
selected boundary conditions: constraining one skin, then, two skins to simply-supported on edge, 
demonstrating the difficulty in predicting deterministic resonance frequencies even on simple 
systems. 
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Figure 5. Case C1-Comparisons of (Left) Model density and (Right) conductance using SEA+ 
Dynamic Laminate (red), PCOMP NASTRAN (dashed green) and SEA+ uniform equivalent 

static plate (dot blue) 

 
Figure 6. Case C1 - Comparisons of (Left) Model density and (Right) conductance using SEA+ 

Dynamic Laminate (red) and PSOLID 1 & 2 NASTRAN  

6.3 Aerospace sandwich singly-curved structure 

Case C2 is a quarter of cylinder in same sandwich than C1. Radius and length are set to 1 m. 
Again a very good agreement is found between FEM and SEA+ calculation (see Figure 7, Modal 
density comparison with PSOLID2 model). 

 
Figure 7. Case C2 - Comparisons of SEA+ and NASTRAN PSOLID2 Model density for a quarter 

of simply-supported cylinder 

6.4 Sandwich steel plate with viscoelastic insertion 

Case C3 is also a 3-layered steel panel with very thin film of viscoelastic material bonding 
together two thin steel plates. A sample from ThyssenKrupp manufacturer was measured to 
compare with SEA+ simulation. Characteristic used in the modeling are reported in next Table 1.  

 
Table 2. Characteristic of tested samples 
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Core material intrinsic DLF is taken equal to 1. Skin DLF are fixed arbitrarily to 0.01.  
Regarding measured data, a set of complex frequency transfer inertances were recorded under 
impact hammer using InterAC SEA-XP data Acquisition system. Driving point inertances are 
converted into conductance per 1/3rd octave band. Reverberation time on free-free panels is also 
analyzed and converted into DLF.  
In Figure 8 are reported calculated flexural input conductances for both SEA+ and FEM (here 
PCOMP model result) and measurement. SEA+ modal density and conductances are also found 
in good agreement with PCOMP, PSOLID and measurement results. Prediction of DLF is also 
satisfactory compared to measurement as the impact pulse is very short with low modal density 
below 1000 Hz. Nevertheless, both Power Injected Method (PIM) and Reverberation time are 
leading to same measured DLF values in the range 200-2000 Hz. 

 
Figure 8. Case C3 - Viscoelastic steel sandwich - Left: SEA+ Laminate and NASTRAN PSOLID 
conductances compared to measurement - Right: SEA+ DLF laminate calculation compared to 

measurement through injected power 

6.5 Multilayered window 

Case C4 is a window made of five layers. Layers are 8mm-Glass, 9.6mm-PU (Polyurethane), 
8mm-Glass, 2mm-PVB (Polyvinyl Butyral) and 3mm-Glass. Window size is 0.76m x 1m. Modal 
density of corresponding SEA+ laminate model is checked against measured and calculated data 
in Figure 9 (left). Measured modal density is obtained from FRF measurements performed 
directly on the built-up window with hammer impact. Measured modal density is obtained from 
the relationship 4N mY= , with m the window mass and Y the real part of driving point FRF. The 
comparative calculated modal density is extracted from NASTRAN NX FEM model of the 
window built with PSOLID elements. There is good convergence between the three results taking 
note that actual window was connected to the mounting frame during the measurement, 
explaining observed difference at low frequencies between measured and calculated modal 
densities. 

 

Figure 9. Case C4 - Multilayered window - Left: SEA+ and NASTRAN FEM calculated modal 
density compared with experimental modal density and Right: calculated DLF compared with 

RTIR and PIM measurements 
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Predicted SEA+ DLF is compared to measured DLF in Figure 9 (right).  
Measured DLF is identified in two different ways by Reverberation Time of window Impulse 
Response (RTIR) and by Power Injected Method (PIM) using SEA-TEST software. 

7 CONCLUSIONS 

The SEA+ Dynamic Laminate model is based on a new theory which provides fast calculation 
of SEA parameters. This theory is reducing the 3D dynamic of a multi-layered thin shell to 
the assembly of series of thin orthotropic layers, each layer being described by a single 
material and by its asymptotic uncoupled dynamic stiffness. Along transverse direction, the 
strain shape motion is assumed to behave as static with continuous displacement and rotation 
and discontinuous second z-derivative at layer interfaces. This theory is then a specific 
instance of the Zig-Zag theory using local asymptotic motions of individual layers in place of 
the classical Taylor’s series decomposition of the global motion for projecting the actual 
motion. Dynamic Laminate theory has been extended from plate to singly-curved and doubly-
curved systems and released in SEA+ 2015. Comparative calculations with FEM models and 
with measurements have shown good convergence in all tested configurations which were 
requiring specific SEA model, now all covered by the Dynamic Laminate construction. 
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