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ABSTRACT

Recently the interest of aerospace and automotive industries toward the study of the vibra-
tional response of orthotropic shell structures has grown rapidly. The low and high-frequency
responses can be correctly simulated by the Finite Element Method (FEM) or the Statistical En-
ergy Analysis (SEA) respectively. Over the last few years some Trefftz methods such as the Vari-
ational Theory of Complex Rays (VTCR) has been proposed to address the medium-frequency
range. In this paper the extension of the VTCR to orthotropic shell structures has been devel-
oped. The theory has been generalized to orthotropic materials and a significant numerical
example has been proposed to illustrate the effectiveness of the method.
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1 INTRODUCTION

The increased use of composite shell structures has fostered interest towards virtual testing of
vibrational behavior of orthotropic shell structures. In literature there are many methods opti-
mized to investigate a vibrational problem is a specific frequency range. [1] reports a detailed
description of these approaches. The present work focus on the mid-frequency range extending
the applicability of the Variational Theory of Complex Rays (VTCR) [2] to orthotropic shell
structures. This method approximates the vibrational problem solution as a sum of shape func-
tions that identically satisfy equilibrium equations and addresses boundary conditions in weak
form. This approach allows a priori independent approximations among subdomains granting
flexibility and robustness. VTCR has been already implemented in shallow shell theory [3] and
for orthotropic plates [4].

The present work extends the VTCR to orthotropic shell structures. First, the general
shell-VTCR theory is presented and corrections are introduced for orthotropic shells. After that,
a relevant numerical example is investigated to validate the strategy.

2 SHELL - VTCR

We will refer to the notation introduced in [5] where the general shell theory is described. Since
the VTCR is a Trefftz method, the solution is searched in a function set that satisfy equilibrium
equations. Boundary and corner residuals are addressed in weak form B = l where B is the
bilinear form, l is the linear form being VTCR a Galerkin method. [3] reports a more detailed
version of the weak variational formulation.

Since VTCR is a Trefftz method, any kind of shape function fSFi, proved that satisfy
equilibrium equations, can be chosen as solution in subdomain Ωi. In the present work plane
waves are used

fSF (xreli) ≈
n∑
l=1

aliĉlie
jklixrel , (1)

where aqi are amplitude coefficients determined by the weak form, kli is the wave vector, ĉli
unit direction vector, and xreli is the relative position vector in curvilinear coordinates {αi, βi}.
Without loss of generality, the wave vector can be divided in the wavenumber kli and the unit
direction vector of the wave vector k̂li

ki(l) = kli = klik̂li. (2)

kli and ĉli are chosen so that equilibrium equations are identically satisfied. The dis-
cretization is performed on k̂li. Two kind of plane waves are needed: evanescent and propaga-
tive. The difference lies on k̂li. It is

k̂li = LiOiTli · p (3)

Tli =

[
cos(θli) − sin(θli)
sin(θli) cos(θli)

]
, Oi = 8

√
DαiDβi

[
D
−1/4
αi 0

0 D
−1/4
βi

]
, Li =

[
Lαi 0
0 Lβi

]
(4)

where p = [1, 0]′ for propagative waves and p = [cosh(φmi), j sinh(φmi)]
′ for evanescent

waves, Lαi and Lβi are Lamé parameters, θli is the discretization angle over the unit circle,
and φmi is a real parameter that controls between the oscillatory and the evanescent part of the
evanescent wave. Figure 1 reports their qualitative behavior. Li and Oi are correction matrices
for orthotropic materials.
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(a) Propagative waves. (b) Evanescent waves.

Figure 1: Qualitative behavior of the propagative and evanescent waves described in Section 2.

3 NUMERICAL RESULTS

Figure 2 illustrates geometry of a complex frame structure and the amplitude magnitude of the
VTCR solution. Three sub-domains are connected by the same edge. The first two are cylinder
parts while the last one is a plate. All boundaries are clamped but left edge where an out-of-
plane oscillatory distributed load p = [1, 0, 0]′eiωtN/m is applied. For the sake of simplicity
thicknesses are constant h1 = h2 = h3 = 3mm as well as the damping factor η = 0.001.
Table 1 reports material properties as well as frequency.

f 3700 Hz
Eθ1 = Eθ2 = Ez3 125 GPa
Ey1 = Ey2 = Ey3 60 GPa

Gθy1 = Gθy2 = Gzy3i 18 GPa
νθy1 = νθy2 = νzy3 0.3
ρ1 = ρ2 = ρ3 2000 Kg/m3

Table 1: Orthotropic material properties and frequency examined of the numerical example
described in Section 3.

The VTCR implemented in MATLAB® is compared with a FEM reference generated by
ABAQUS® . The two programs are run on the same workstation and performances compared.
The error based on kinetic energy is

err =
|EK(uFEM)− EK(uV TCR)|

EK(uFEM)
. (5)

In this case the error is ≈ 8% due to small theory differences. Computational costs are
illustrated in Table 2. FEM mesh must be very refined to counteract the pollution effect [6]. For
this reason, VTCR greatly outperforms FEM in terms of time and memory consumption.
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ẑ

x̂

1m 1m

(a) Geometry. (b) VTCR. (c) FEM.

Figure 2: Geometry, VTCR and FEM solutions of the frame structure described in Section 3..
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Time consumption Memory consumption
FEM 1153 [s] 10 [Gb]

VTCR 4 [s] 70 [Kb]

Table 2: Performances comparison of the numerical example described in Section 3

4 CONCLUSIONS

Corrections for orthotropic materials were introduced in the general shell-VTCR theory. Since
at mid-frequency FEM suffers of pollution error, FEM mesh must be very refined. For this
reason, VTCR greatly outperforms FEM at mid-frequency.
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