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ABSTRACT

Recently the interest of aerospace and automotive industries toward the study of the vibra-
tional response of orthotropic shell structures has grown rapidly. The low and high-frequency
responses can be correctly simulated by the Finite Element Method (FEM) or the Statistical En-
ergy Analysis (SEA) respectively. Over the last few years some Trefftz methods such as the Vari-
ational Theory of Complex Rays (VICR) has been proposed to address the medium-frequency
range. In this paper the extension of the VICR to orthotropic shell structures has been devel-
oped. The theory has been generalized to orthotropic materials and a significant numerical
example has been proposed to illustrate the effectiveness of the method.
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1 INTRODUCTION

The increased use of composite shell structures has fostered interest towards virtual testing of
vibrational behavior of orthotropic shell structures. In literature there are many methods opti-
mized to investigate a vibrational problem is a specific frequency range. [1] reports a detailed
description of these approaches. The present work focus on the mid-frequency range extending
the applicability of the Variational Theory of Complex Rays (VTCR) [2] to orthotropic shell
structures. This method approximates the vibrational problem solution as a sum of shape func-
tions that identically satisfy equilibrium equations and addresses boundary conditions in weak
form. This approach allows a priori independent approximations among subdomains granting
flexibility and robustness. VTCR has been already implemented in shallow shell theory [3] and
for orthotropic plates [4].

The present work extends the VTCR to orthotropic shell structures. First, the general
shell-VTCR theory is presented and corrections are introduced for orthotropic shells. After that,
a relevant numerical example is investigated to validate the strategy.

2 SHELL - VTCR

We will refer to the notation introduced in [5] where the general shell theory is described. Since
the VTCR is a Trefftz method, the solution is searched in a function set that satisfy equilibrium
equations. Boundary and corner residuals are addressed in weak form B = 1 where B is the
bilinear form, 1 is the linear form being VTCR a Galerkin method. [3] reports a more detailed
version of the weak variational formulation.

Since VTCR is a Trefftz method, any kind of shape function fgp;, proved that satisfy
equilibrium equations, can be chosen as solution in subdomain €2;. In the present work plane
waves are used

n
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where a,; are amplitude coefficients determined by the weak form, k;; is the wave vector, ¢;;
unit direction vector, and x,.;; is the relative position vector in curvilinear coordinates {«;, f3; }.
Without loss of generality, the wave vector can be divided in the wavenumber k;; and the unit
direction vector of the wave vector Rli

ki(l) = ky; = kyiky. 2)

k;; and ¢;; are chosep so that equilibrium equations are identically satisfied. The dis-
cretization is performed on k;;. Two kind of plane waves are needed: evanescent and propaga-
tive. The difference lies on k;;. It is

~
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where p = [1,0] for propagative waves and p = [cosh(¢;), J sinh(¢n;)] for evanescent

waves, L,; and Lg; are Lamé parameters, 0, is the discretization angle over the unit circle,
and ¢,,; is a real parameter that controls between the oscillatory and the evanescent part of the
evanescent wave. Figure 1 reports their qualitative behavior. L; and O; are correction matrices
for orthotropic materials.
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(a) Propagative waves. (b) Evanescent waves.

Figure 1: Qualitative behavior of the propagative and evanescent waves described in Section 2.

3 NUMERICAL RESULTS

Figure 2 illustrates geometry of a complex frame structure and the amplitude magnitude of the
VTCR solution. Three sub-domains are connected by the same edge. The first two are cylinder
parts while the last one is a plate. All boundaries are clamped but left edge where an out-of-
plane oscillatory distributed load p = [1,0,0)'e™*N/m is applied. For the sake of simplicity
thicknesses are constant h;y = hy = hy = 3mm as well as the damping factor n = 0.001.
Table 1 reports material properties as well as frequency.

f 3700 Hz
E@l = EQQ = Ezg 125 GPa
By =Ep=FEy 60 GPa
Ggyl = Ggyg = Gzygi 18 GPa
Voy1 = Voy2 = Vzy3 0.3
p1 = P2 = p3 2000 Kg/m?

Table 1: Orthotropic material properties and frequency examined of the numerical example
described in Section 3.

The VTCR implemented in MATLAB® is compared with a FEM reference generated by
ABAQUS® . The two programs are run on the same workstation and performances compared.
The error based on kinetic energy is

— |Ex(upem) — EK(U—VTCR)|' )

Ex(urpnm)
In this case the error is =~ 8% due to small theory differences. Computational costs are
illustrated in Table 2. FEM mesh must be very refined to counteract the pollution effect [6]. For
this reason, VTCR greatly outperforms FEM in terms of time and memory consumption.

(a) Geometry. (b) VTCR. (c) FEM.

Figure 2: Geometry, VTCR and FEM solutions of the frame structure described in Section 3..




DYNCOMP’2015 2-4 June 2015, Arles (France)

Time consumption Memory consumption
FEM 1153 [s] 10 [Gb]
VTCR 4 [s] 70 [Kb]

Table 2: Performances comparison of the numerical example described in Section 3

4 CONCLUSIONS

Corrections for orthotropic materials were introduced in the general shell-VTCR theory. Since
at mid-frequency FEM suffers of pollution error, FEM mesh must be very refined. For this
reason, VTCR greatly outperforms FEM at mid-frequency.
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