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ABSTRACT

In this work, the sound transmission through a sandwich cylinder with a poroelastic core is
studied analytically. The cylinder is composed of two orthotropic skins, modeled with a shell
theory, and a poroelastic core modeled with the full 3D Biot’s theory. Thus, a mixed “Biot-
Shell” analytical model is presented in this paper. First, the motion of the sandwich cylinder
obtained with this mixed “Biot-Shell” model is presented. Then, the model is used to calculate
the sound transmission in the case of an excitation by an external oblique plane wave. A very
good agreement is found when the results are compared to those obtained with a finite element
model. Finally, some results are presented and the Transmission Loss (TL) is studied in different
configurations. The main conclusion obtained from the results is that the poroelastic coating
can significantly improve the TL of a cylindrical structure in mid- and high frequencies.
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1 INTRODUCTION

Multilayer cylinders are widely used in aeronautics and aerospace industries. Generally de-
signed to be as light as possible, these structures must also take into account the problem of
inner noise transmission. Indeed, protection against noise is still necessary in such applications,
whether it is for the passengers comfort or the payload protection. Thus, an optimization tool
is necessary to reduce the total weight of the structure while increasing its acoustic efficiency.
Consequently, fast analytical models have to be developed in order to predict accurately the
sound transmission through these cylindrical structures.

In these applications, poroelastic materials are commonly used to reduce significantly
the noise transmitted inside the compartment. Many studies have been made to model the
behavior of these porous materials, and literature reveals a large number of publications on this
subject. However, the state of the art shows that there are two main approaches to model them.
The first way is to model them as equivalent fluids [1]. In these models, the viscous and thermal
effects due to the skeleton are considered, but the skeleton elasticity is neglected. The second
way is to use Biot’s model [2, 3]. In the case of Biot’s model, the motion of the skeleton is
taken into account through the elastodynamic equations. This basic model considers the porous
material as a superposition of two coupled solid and fluid phases. It is more adapted to model
the dynamic behavior of poroelastic materials.

In this paper, the sound transmission through a sandwich cylinder having a poroelastic
core modeled with Biot’s theory is studied analytically. The two skins of the sandwich structure
are orthotropic and modeled with a shell model. Thus, a mixed “Biot-Shell” analytical model
is presented in this paper. In section 2, the motion of the sandwich cylinder obtained with
this mixed “Biot-Shell” model is presented. The transfer matrix of the poroelastic core is used
to couple the two skins. In section 3, the model is used to calculate the sound transmission
when the cylinder is excited by an external oblique plane wave. In section 4, numerical results
obtained with the proposed model are presented. As firstly shown, a very good agreement is
found when the results are compared to those obtained with a finite element model. Then, the
Transmission Loss (TL) is studied in different configurations. Finally, the main conclusions are
presented in section 5.

2 VIBRATIONS OF THE SANDWICH CYLINDER

The sandwich structure and the notations used in the following are presented in detail in Fig-
ure 1. Note that layers 1 and 3 refer to the inner and outer skins respectively, and that layer 2
designates the poroelastic core.

2.1 Motion of the orthotropic skins

For each skin i (i = 1, 3) the displacement field is given by the First-order Shear Deformation
Theory (FSDT):

ui(z, θ, ξ) = ui0(z, θ) + ξψiz(z, θ), (1a)

vi(z, θ, ξ) = vi0(z, θ) + ξψiθ(z, θ), (1b)

wi(z, θ, ξ) = wi0(z, θ), (1c)

where ui0, v
i
0 and wi0 are the displacements at ξ = 0 of the layer i in the axial, circumferential

and radial directions, respectively, and ψiz and ψiθ are the rotations of the normal to the median
surface of each layer i. Note that the ξ-axis origin is at the median surface of the cylinder (see
Figure 1).
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Figure 1. Sandwich structure and notations.

For each skin, five equilibrium equations are written in terms of displacements as (see
[4, 5] for more details):

Liui + Miüi = qi, (2)

with ui the displacement-rotation vector and qi the force-moment vector given by:

ui =
[
ui0, v

i
0, w

i
0, ψ

i
z, ψ

i
θ

]T and qi =
[
qiz, q

i
θ, q

i
r,m

i
z,m

i
θ

]T
. (3)

Moreover, Li is the stiffness operator and Mi is the mass matrix, which are not given here for
sake of conciseness but can be found in reference [5].

2.2 Transfer matrix of the poroelastic core

Biot’s theory is used to describe the motion of the poroelastic core. The classical Biot’s equa-
tions involve the solid phase (skeleton) displacement field Us and the fluid phase displacement
field Uf [1, 2]. However, it has been shown by Atalla et al. [6] that Biot’s equations can be
rewritten in order to introduce the interstitial pressure p instead of the fluid displacement field
Uf . This mixed (Us, p) formulation has the great advantage of reducing the number of degrees
of freedom per node from 6 to 4 in a finite element implementation. Moreover, according to
Hamdi et al. [7], the mixed formulation presented by Atalla et al. [6] can be reformulated
in order to involve explicitly the total stress tensor in the poroelastic medium. In this way,
the associated weak integral formulation has the great advantage of leading to natural coupling
conditions at the interface between two adjacent layers [7, 8]. The combination between the
method given by Atalla et al. [6] and the formulation proposed by Hamdi et al. [7] leads to the
following mixed Biot’s equations, written in terms of the solid phase displacement field Us and
the interstitial pressure p:

ρ̃ω2Us +∇ · (σ̂s − αφpI) + β∇(φp) = 0, (4)

∇ ·
(

1

ρ̃22ω2
∇(φp)− βUs

)
+
φp

R̃
+ α∇ ·Us = 0, (5)

where φ is the porosity, σ̂s the stress tensor of the skeleton in vacuo, and I the identity matrix.
The terms α = 1 + Q̃

R̃
and β = 1 + ρ̃12

ρ̃22
are two coupling factors between the skeleton and the

interstitial fluid. Moreover, the effective densities ρ̃, ρ̃12, and ρ̃22 and the elastic coefficients Q̃
and R̃ can be found in reference [1]. Note however that the time convention e−jωt is taken here
with an angular frequency ω.
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By using the stress-displacement relation σ̂s = λ (∇ ·Us) I+µ
(
∇Us + (∇Us)T

)
, the

first mixed Biot’s equation (4) becomes:

ρ̃ω2Us + (λ+ 2µ)∇(∇ ·Us)− γ̃∇(φp)− µ∇∧∇ ∧Us = 0, (6)

where λ and µ are the Lamé coefficient of the skeleton in vacuo and γ̃ = α − β. To solve this
equation, the following Helmholtz decomposition is used for the solid displacement:

Us = ∇ (ϕs1 + ϕs2) +∇∧ψs, (7)

whereϕs1 andϕs2 are the scalar potentials related to the two longitudinal waves, andψs the vector
potential related to the shear wave in the poroelastic medium. Substituting the decomposition
(7) into Biot’s equations (6) and (5) gives, all calculations done, three wave equations fulfilled
by each of the potentials:

∆ϕs1 +
ω2

c21
ϕs1 = 0, ∆ϕs2 +

ω2

c22
ϕs2 = 0 and ∆ψs +

ω2

c23
ψs = 0, (8)

where ∆ is the Laplacian operator, c1 and c2 the celerity of the two longitudinal waves and c3
the celerity of the shear wave. The details of c1, c2 and c3 can be found in reference [1]. The
substitution of (7) into (6) also gives a relation between the interstitial pressure and the scalar
potentials:

p =
1

γ̃φ

(
(λ+ 2µ)∆ (ϕs1 + ϕs2) + ρ̃ω2 (ϕs1 + ϕs2)

)
. (9)

The general solutions of the wave equations given in (8) are expanded in cylindrical
harmonics. By substituting these solutions into equation (7), the following solid displacement
field is obtained:

U s
r (r, θ, z, t) =

∞∑
n=0

U s,n
r (r) cos(nθ)ejkzz−jωt, (10a)

U s
θ (r, θ, z, t) =

∞∑
n=0

U s,n
θ (r) sin(nθ)ejkzz−jωt, (10b)

U s
z (r, θ, z, t) =

∞∑
n=0

jU s,n
z (r) cos(nθ)ejkzz−jωt, (10c)

where n designates the circumferential order and kz the axial wavenumber. Moreover, U s
r , U s

θ

andU s
z are the radial, circumferential and axial components respectively. The fluid displacement

Uf is also related to the scalar and vector potentials with

Uf = ∇ (µ1ϕ
s
1 + µ2ϕ

s
2) +∇∧ µ3ψ

s, (11)

where the amplitude ratios µ1, µ2 and µ3 can be found in reference [1]. The radial component
is thus also expanded in cylindrical harmonics as follows:

U f
r (r, θ, z, t) =

∞∑
n=0

U f,n
r (r) cos(nθ)ejkzz−jωt. (12)

The stress components are also needed to characterize the poroelastic medium. The total
stress tensor in the poroelastic medium σt is the sum of a tensor related to the solid phase σ̂s

and a tensor related to the fluid phase σ̂f :

σt = σ̂s + σ̂f , (13)
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where the notation σ̂f = −αφpI has been introduced. The solid phase stress tensor is obtained
by using the stress-displacement relation. This yields:

σ̂srr(r, θ, z, t) =
∞∑
n=0

σ̂s,nrr (r) cos(nθ)ejkzz−jωt, (14a)

σ̂srθ(r, θ, z, t) =
∞∑
n=0

σ̂s,nrθ (r) sin(nθ)ejkzz−jωt, (14b)

σ̂srz(r, θ, z, t) =
∞∑
n=0

jσ̂s,nrz (r) cos(nθ)ejkzz−jωt. (14c)

The tensor σ̂f is obtained by using the expression of p given in equation (9). The scalar poten-
tials ϕs1 and ϕs2 being defined in cylindrical coordinates, this tensor is also expanded in cylindri-
cal harmonics. This yields for σ̂frr:

σ̂frr(r, θ, z, t) =
∞∑
n=0

σ̂f,nrr (r) cos(nθ)ejkzz−jωt. (15)

The modal transfer matrix method is now used to relate the displacements and stresses
at each interface of the poroelastic core. The modal amplitudes at the interfaces r = r1+ and
r = r3− of the core are hence related with:

Ŝ(r1+) = T̂Ŝ(r3−), (16)

where Ŝ(r) =
[
U s,n
z (r), U s,n

θ (r), U s,n
r (r), U f,n

r (r), σ̂s,nrz (r), σ̂s,nrθ (r), σ̂s,nrr (r), σ̂f,nrr (r)
]T is the modal

amplitude vector, and T̂ is the 8×8 modal transfer matrix. Equation (16) can be rewritten in or-
der to express the stresses components in terms of the displacements components. This yields:

σ̂1−3
n = k̂ Û1−3

n , (17)

with

σ̂1−3
n =

[
σ̂s,nrz (r1+), σ̂s,nrθ (r1+), σ̂s,nrr (r1+), σ̂f,nrr (r1+),−σ̂s,nrz (r3−),−σ̂s,nrθ (r3−),−σ̂s,nrr (r3−),−σ̂f,nrr (r3−)

]T
,

(18)
and

Û1−3
n =

[
U s,n
z (r1+), U s,n

θ (r1+), U s,n
r (r1+), U f,n

r (r1+), U s,n
z (r3−), U s,n

θ (r3−), U s,n
r (r3−), U f,n

r (r3−)
]T
.

(19)
The matrix k̂ is homogeneous to a stiffness matrix and is build from the components of the
modal transfer matrix T̂.

2.3 Coupling conditions

(i) The continuity of the displacements must be satisfied at the core-skin interfaces. At r = r1+
(interface between layers 1 and 2) this condition writes:

U s
z (r1+, θ, z) = u1(z, θ, h1+) = u10(z, θ) + h1+ψ

1
z(z, θ), (20a)

U s
θ (r1+, θ, z) = v1(z, θ, h1+) = v10(z, θ) + h1+ψ

1
θ(z, θ), (20b)

U s
r (r1+, θ, z) = w1(z, θ, h1+) = w1

0(z, θ), (20c)

U f
r (r1+, θ, z) = w1(z, θ, h1+) = w1

0(z, θ), (20d)
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while at r = r3− (interface between layers 2 and 3) it writes:

U s
z (r3−, θ, z) = u3(z, θ, h3−) = u30(z, θ) + h3−ψ

3
z(z, θ), (21a)

U s
θ (r3−, θ, z) = v3(z, θ, h3−) = v30(z, θ) + h3−ψ

3
θ(z, θ), (21b)

U s
r (r3−, θ, z) = w3(z, θ, h3−) = w3

0(z, θ), (21c)

U f
r (r3−, θ, z) = w3(z, θ, h3−) = w3

0(z, θ). (21d)

(ii) Instead of using the stress continuity explicitly, the forces qi appearing in the right-
hand side of the skins equations (2) will be split as the sum of the generalized reaction forces
q̂icore applied by the poroelastic core on the skin i, and of the external forces qiext:

Liui + Miüi = q̂icore + qiext. (22)

The generalized core reaction forces given here are obtained by using the stress components of
the poroelastic core in Eqs. (14) and (15) such as:

q̂1
core =


σ̂srz(r1+, θ, z, t)
σ̂srθ(r1+, θ, z, t)

σ̂srr(r1+, θ, z, t) + σ̂frr(r1+, θ, z, t)
h1+σ̂

s
rz(r1+, θ, z, t)

h1+σ̂
s
rθ(r1+, θ, z, t)

 and q̂3
core = −


σ̂srz(r3−, θ, z, t)
σ̂srθ(r3−, θ, z, t)

σ̂srr(r3−, θ, z, t) + σ̂frr(r3−, θ, z, t)
h3−σ̂

s
rz(r3−, θ, z, t)

h3−σ̂
s
rθ(r3−, θ, z, t)

 .
(23)

and while the external forces qiext write:

qiext =
[
f iz,ext, f

i
θ,ext, f

i
r,ext,m

i
z,ext,m

i
θ,ext

]T
, (24)

with f iz,ext, f
i
θ,ext and f ir,ext the external forces per unit area, and mi

z,ext and mi
θ,ext the external

moments per unit area.

2.4 Global dynamic equilibrium

The two equations of motion of the skins are firstly grouped into a single system:[
L1 0
0 L3

] [
u1

u3

]
+

[
M1 0
0 M3

] [
ü1

ü3

]
=

[
q̂1
core

q̂3
core

]
+

[
q1
ext

q3
ext

]
, (25)

and, as in section 2.2 for the core displacement, the skins displacements and the external forces
are expanded in cylindrical harmonics:
ui0
vi0
wi0
ψiz
ψiθ

 =
∞∑
n=0


jui0n cos(nθ)
vi0n sin(nθ)
wi0n cos(nθ)
jψizn cos(nθ)
ψiθn sin(nθ)

 ejkzz−jωt and


f iz,ext
f iθ,ext
f ir,ext
mi
z,ext

mi
θ,ext

 =
∞∑
n=0


jf izn,ext cos(nθ)
f iθn,ext sin(nθ)
f irn,ext cos(nθ)

jmi
zn,ext cos(nθ)

mi
θn,ext sin(nθ)

 ejkzz−jωt.

(26)
Using the expressions of the skins displacements and of the external forces given in equa-
tion (26), equation of motion (25) can be rewritten for each circumferential mode n as follows:[

K1 0
0 K3

] [
u1
n

u3
n

]
− ω2

[
M1 0
0 M3

] [
u1
n

u3
n

]
=

[
q̂1
n,core

q̂3
n,core

]
+

[
q1
n,ext

q3
n,ext

]
, (27)
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where uin is the displacement-rotation amplitude vector:

uin =
[
ui0n, v

i
0n, w

i
0n, ψ

i
zn, ψ

i
θn

]T
, (28)

q̂in,core is the generalized reaction amplitude vector:

q̂1
n,core =


σ̂s,nrz (r1+)
σ̂s,nrθ (r1+)

σ̂s,nrr (r1+) + σ̂f,nrr (r1+)
h1+σ̂

s,n
rz (r1+)

h1+σ̂
s,n
rθ (r1+)

 and q̂3
n,core = −


σ̂s,nrz (r3−)
σ̂s,nrθ (r3−)

σ̂s,nrr (r3−) + σ̂f,nrr (r3−)
h3−σ̂

s,n
rz (r3−)

h3−σ̂
s,n
rθ (r3−)

 , (29)

qin,ext is the external force amplitude vector:

qin,ext =
[
f izn,ext, f

i
θn,ext, f

i
rn,ext,m

i
zn,ext,m

i
θn,ext

]T
, (30)

and Ki is the stiffness matrix given in reference [5].
The generalized reaction amplitude vectors q̂1

n,core and q̂3
n,core appearing in the right-

hand side of Eq. (27) can be written in terms of the skins displacements, using equations (17),
(20) and (21). The resulting generalized reaction amplitude vectors write hence:[

q̂1
n,core

q̂3
n,core

]
=

[
K̂2

11 K̂2
13

K̂2
31 K̂2

33

] [
u1
n

u3
n

]
, (31)

and after substitution of this equation in (27), we finally obtain:[
K1 − K̂2

11 −K̂2
13

−K̂2
31 K3 − K̂2

33

] [
u1
n

u3
n

]
− ω2

[
M1 0
0 M3

] [
u1
n

u3
n

]
=

[
q1
n,ext

q3
n,ext

]
. (32)

Equation (32) describes the motion of the entire structure excited by external forces. This
equation clearly shows the coupling between the inner and the outer skin with the impedance
matrix of the poroelastic core K̂2(ω).

3 VIBROACOUSTIC PROBLEM

3.1 Global vibroacoustic system

In this paper, the cylinder is excited by an external oblique plane wave. For this kind of excita-
tion, the external forces acting on the structure are the following:

q1
ext = [0, 0, p2(r1−, θ, z, t), 0, 0]T and q3

ext = [0, 0,−p1(r3+, θ, z, t), 0, 0]T , (33)

where p1 and p2 are the acoustic pressures in the external medium and in the cavity respectively.
In reference [5] it is shown that for this kind of excitation, the external force amplitude vectors
qin,ext can be written in terms of the skins displacement amplitude vectors uin in the following
form: [

q1
n,ext

q3
n,ext

]
=

[
Z1 0
0 Z3

] [
u1
n

u3
n

]
+

[
0
pbn

]
, (34)

where pbn is the blocked-wall vector expressed in terms of the blocked-wall pressure pb. More-
over, Z1 and Z3 are impedance matrices expressed in terms of Z1n and Z2n, the radiation
impedance of the external and internal surfaces of the cylinder respectively. The expressions of
pbn, Z1 and Z3 are given in reference [5]. Finally, the global vibroacoustic system is obtained
by substituting (34) into (32):[

K1 − K̂2
11 − Z1 −K̂2

13

−K̂2
31 K3 − K̂2

33 − Z3

] [
u1
n

u3
n

]
− ω2

[
M1 0
0 M3

] [
u1
n

u3
n

]
=

[
0
pbn

]
. (35)
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Figure 2: Comparison of the mean-square pressure obtained with the present mixed “Biot-
Shell” analytical model and with a finite element model for a sandwich cylinder excited by a
plane wave (γ = 0◦). ( ) Mixed “Biot-Shell” analytical model, (+) finite element model.

3.2 Transmission Loss calculation

The Transmission Loss (TL) is used to characterize the sound transmission. The TL is defined
by:

TL = 10 log
W I

W T
, (36)

where W I and W T are the incident and transmitted powers, respectively. All calculations done,
the TL is found in the following form (see reference [5] for more details):

TL = −10 log
∞∑
n=0

Re {Z2nw
1
0n · (−jωw1

0n)∗} r1−ρ1c01π
r3+p20εn cos γ

, (37)

where γ is the incidence angle with respect to the normal of the cylinder. Moreover, p0 is the
amplitude of the incident wave, εn is the Neumann factor (εn = 1 if n = 0, εn = 2 if n 6= 0),
ρ1 and c01 are the density and the speed of sound in the external fluid, and Re{.} and ∗ are the
real part and the complex conjugate, respectively. The displacement amplitude w1

0n is obtained
by solving the global vibroacoustic system (35) for each circumferential mode n.

4 RESULTS

4.1 Analytical model validation

In this section, the mixed “Biot-Shell” analytical model is validated with a finite element model.
The problem studied here is the acoustic transmission through an infinite cylinder. To simulate
the axially infinite extent, a 2-dimensional finite element model in the (r-θ) plane is used, and
the external plane wave is applied at normal incidence with respect to the cylinder axis (γ = 0◦).
The model is meshed with linear triangular elements, and an absorbent Perfectly Matched Layer
(PML) is also used to impose a non-reflection boundary condition. Note that a resonant cavity is
considered in the finite element model. This condition is therefore also applied in the analytical
model. Finally, the mean-square pressure 〈p2int〉 in the internal cylindrical cavity is used herein
to compare the two methods.

Figure 2 presents the mean-square pressure obtained with the two methods, in the case
of a sandwich cylinder having aluminum skins of 5 mm and a foam core of 20 mm, whose
properties are given in reference [9]. A very good agreement is obtained between the mixed

8
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Figure 3: Effect of the poroelastic material on the TL of a cylinder excited by a plane wave
(γ = 45◦). ( ) Single shell, ( ) shell + poroelastic coating (two-layer configuration).

“Biot-Shell” analytical model and the finite element model. Other configurations have also
been tested and have given similar results. The analytical model is hence validated. Note also
that the computation time of the analytical model is very low compared to the finite element
model.

4.2 Poroelastic material effects

The mixed “Biot-Shell” analytical model is now used to study the influence of the poroelastic
material on sound transmission. To do this, two configurations are studied. The first one is the
single shell configuration, where a single orthotropic shell is considered. The second one is
the two-layer configuration, where a poroelastic coating is added to the shell used in the first
configuration. The orthotropic shell being the same in both cases, this allows us to directly
study the influence of the poroelastic material on sound transmission. Note that the calculation
is made for an aerospace configuration (r3+ = 2.164 m, shell thickness of 2 mm and poroelastic
thickness of 50 mm). The results are presented in Figure 3.

In view of this figure, the ring frequency fr separates two domains. Below the ring
frequency, in very low frequencies (f < 60 Hz), adding a poroelastic material does not reduce
sound transmission and the TL is not improved. Indeed, for f < fr, the structure vibrates with
a global behavior and sound transmission is primarily governed by the rigid shell. Nevertheless,
the poroelastic layer shifts the frequencies of the structural resonances. However, it is found that
around the ring frequency, adding a poroelastic layer improves the TL. Indeed, a gain from 1 to
2 dB is observed in this frequency zone. This interesting result is explained by the fact that the
poroelastic layer adds damping to the structure, which is mainly due to the thermal and viscous
dissipation. Since the TL is dependent of the damping at the ring frequency, this explains why
the results are improved with the poroelastic layer.

Observing now the results above the ring frequency, we see that the TL is significantly
improved with the poroelastic material. Three factors can explain this phenomenon. First, the
poroelastic material adds weight to the structure. This allows the TL to be increased, mainly in
the mass-controlled zone (between 175 Hz and 6000 Hz). Then, the poroelastic material adds
damping to the structure. Thus, it reduces the TL at its dips (between 6000 Hz and 7500 Hz
in particular). Last but not least, the poroelastic material has a high power of absorption of
acoustic waves, and its efficiency is greater when the frequency increases. This explains the
improving of the TL in the mid- and high frequencies with the poroelastic coating.

9
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Finally, since the mass of the poroelastic layer is low, adding this type of material is a
very interesting solution to reduce the sound transmission through cylindrical structures.

5 CONCLUSION

In this paper, a mixed “Biot-Shell” analytical model has been presented. Its main advantage is
to allow fast analytical calculations of sound transmission through orthotropic shells having a
poroelastic coating, taking into account the elasticity effects of the poroelastic material.

Two important effects of the poroelastic layer were highlighted from the results obtained
with the proposed model. The first one is to reduce significantly the sound transmission above
the ring frequency, and the second one is to reduce the transmission around the ring frequency.
The mass added by a poroelastic material being quite low, this is a very interesting solution to
reduce sound transmission through a cylindrical structure.

In conclusion, the mixed “Biot-Shell” analytical model proposed in this paper is very
well adapted to describe the behavior of an orthotropic cylinder having a poroelastic coating,
since all the physical phenomena are taken into account in the poroelastic layer with Biot’s
model.
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