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ABSTRACT 
 

The launch vehicles are subject to severe dynamic loads at lift-off and during flight ascent.  
Moreover, a major part of European launch vehicles are of composite construction. Thus, a 
robust design requires a proper consideration of uncertainties in excitations and materials. A 
non-parametric methodology was experienced on the condensed finite element models of parts of 
the ARIANE 5 launcher with the objective of releasing less dimensioning but still justified 
mechanical specifications to get used by the launcher sub-contractors. Such methodology allows 
introducing different level of uncertainties on parts of the launcher depending on the complexity 
of elements and their impact on the dynamic phenomenon targeted. The article details the 
methodology implementation already achieved on ARIANE 5 on the solid rocket booster pressure 
oscillation load case which is one of the driving load case regarding the amplitude of the low 
frequency vibrations on the launcher. 
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1 INTRODUCTION 

A launcher FEM is the result of the assembly of numerous sub-structures FEM provided 
by sub-contractors. Uncertainties at launcher level cover not only scattering of materials and 
modeling but include also discrepancies introduced by operational conditions of use (with 
different boundaries conditions than the ones used to set-up and validate the sub-structure FEM) 
and by connections modeling between sub-structures. Mastering of uncertainties in structural 
dynamics is hence a challenge that can be handled through a various set of methodologies. [1] 
gives a global overview of the research field that can be subdivided, on an engineering 
perspective, into “microscale” schemes dealing with physical properties of FE elements and 
“macroscale“ schemes dealing with mass, stiffness, damping matrices properties of a FE sub-
component.  

• Microscale (parametric) methods are adapted to small models but require prohibitive 
CPU times when applied to large FE models like in a launcher modeling case. 
Furthermore, they take only into account physical parameter uncertainties. 

• Macroscale (non-parametric) methods are introducing uncertainties at a macroscopic 
level of analysis, e.g. on matrices of super-elements of the assembled FEM. The main 
methods include Gaussian orthogonal ensemble, non-parametric approaches and 
matrix scaling. 

These approaches, coupled with simulation methods (Monte-Carlo, Factorial Design) are 
much less CPU demanding and allow introducing macroscopic perturbation covering more than 
physical properties uncertainties. The main drawback is that the link between tuning factors and 
design parameters is not as straightforward as for the local methods. The interpretation of the level 
of uncertainties and its physical likelihood is less direct. A first trade-off between the methods led 
us introducing uncertainties in the launcher FEM through global approaches, e.g. matrix scaling 
and non-parametric techniques. Aside CPU time considerations, these methods are also well 
adapted to the launcher dynamic modeling based on assembly of different Craig-Bampton 
condensed FEM from sub-contractors that can only be scattered through their mass, stiffness and 
damping matrices, native FEM being rarely accessible at launcher system level.  

1.1 Matrix scaling 

The matrix scaling consists in introducing perturbations into mass, damping and stiffness 
condensed matrices [ ]M ,[ ]K , [ ]C  used in the structural dynamics equation (1) with scalar 
operators Mδ , Cδ , Kδ  associated to a probability distribution. Mechanical uncertainties are then 

characterized by random matrices [ ]M~ , [ ]C~ , [ ]K~  (2). 

 [ ]{ } [ ]{ } [ ]{ } { }extFXKXCXM =++ ~~~   (1) 

 [ ] [ ]M.δM~ M= , [ ] [ ]C.δC~ C= , [ ] [ ]K.δK~ K=  (2) 

We applied this technique for simple sub-structures presenting uniform characteristics 
(isotropy of material and/or geometry) where the risk of non-physical likelihood introduced by the 
scaling is limited.  

 
Figure 1: ARIANE 5 payload structure 
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In the ARIANE 5 launcher case, elements like payload adaptors (Figure 1) are relevant for 

such a technique. As a result, the matrix scaling is also suited for models condensed statically via 
the Guyan method.   

1.2 Random matrices 

This technique [3] is a generalization of the matrix scaling applied on FEM super-
elements with stochastic matrices applied on mass, damping and stiffness matrices (3) instead of 
scalar operator. The random matrices are then defined by: 

 [ ] [ ] [ ][ ]MM
T

M L.G.LM~ = , [ ] [ ] [ ][ ]CC
T

C L.G.LC~ = , [ ] [ ] [ ][ ]KK
T

K L.G.LK~ =  (3) 

Where [ ]KCM ,,G  are stochastic initiation matrices and [ ]KCM ,,L  are the mass, damping and 
stiffness matrices expressed by the Cholesky factorization (4). 

 [ ] [ ] [ ]X
T

X L.LX =  with MX = , C,  or K (4) 

Guaranteeing the random matrices being physically admissible, meaning that they give 
admissible solutions of  (1), requires the stochastic initiation matrix [ ]G  verifying the following 
conditions [3], called the available objective information: 

• Random matrices [ ]G  are defined in the probability space               
with values in           . 

• The mean values of these random matrices must be equal to [ ]I  so that 
[ ]( ) [ ]CKMCKM ,,~,~,~ =ε  

• [ ] ∞<




 − 21

F
Gε , where 

F
is the Frobenious norm in order to guarantee that the 

matrix inverse always exists, 
Nevertheless, the amount of uncertainty introduced in the model via this technique can 

still be assessed thanks to a scalar quantity. This so called uncertainty tuning parameter δ  applied 
on [ ]M ,[ ]C  or [ ]K  is defined  by (5): 

 
[ ] [ ]
[ ] 2

F

2

F

I

IG
δ

−
=  (5) 

As a result, an infinite amount of stochastic matrices [G] corresponding to the same level 
of global uncertainty can be generated. This parameter  δ  would thus be an equivalent of the 
standard deviation of a scalar uncertainty: infinity of random values can be generated for a given 
standard deviation in accordance with a defined distribution law. The distribution law associated 
to those matrices [3] has been defined in order to respect the available objective information and 
to minimize the entropy introduced in the system: 

 
])([

2
1-n

2
)-(11)(n

G(R)M[G]
22

2

edet([G])C([G])1([G])P
Gtr

dd
d +

+
⋅⋅⋅= +  (6) 

Where: 
• det([G]) is the determinant of the [G] matrix, 
• ])([Gtr its trace, n its dimension, 

• 
(R)M1 +   is a function equal to 1 as the matrix belongs to (R)M+ , and zero otherwise, 

• GC  is a positive normative constant, detailed in [3]. 
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Unlike the matrix scaling method where the uncertainties are introduced uniformly on the 

FE matrices of each super-element, the non-parametric methodology allows introducing local and 
independent uncertainty factors. 

2 A STUDY CASE –ARIANE5 SOLID ROCKET BOOSTERS FIRST ACOUSTIC 
MODE LOAD CASE  

2.1 Load case characteristics 

One of the main mechanical load case encountered in ARIANE 5 flight is the first Solid 
Rocket Boosters (SRBs) acoustic mode load case [2]. This load case is characterized by sine 
bursts excitations generated by both SRBs (Figure 2) and gives signification vibration responses 
on all parts of the launcher. 

 
Figure 2: ARIANE 5 SRBs first acoustic mode load case 

 
The flight analyses show that the vibrations levels are generated mostly by global modes 

of the launcher (bending modes, tank modes) that are dynamically driven by global mechanical 
characteristics of launcher sub-components. It is then well suited for the non-parametric 
uncertainties methodology applied on mechanical consistent ensembles (stages, skirt…). In 
consequence, we cut the launcher FEM into super-elements (Figure 3) on which uncertainties 
could be applied.  

 
Figure 3: Launcher cutting into elementary mechanical models 
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This includes Craig-Bampton (non-parametric uncertainties) and Guyan (matrix scaling) 

condensation schemes as well as explicit modeling (matrix scaling) for some simple elements. As 
the relevant values of uncertainty tuning parameters δ on the different launcher parts cannot be 
fixed thanks to physical considerations, an inverse problem has to be solved. The aim is then to 
find values for these parameters able to predict responses consistent with what has been observed 
in flight and also with a certain degree of conservatism in order to have a robust simulation tool. 
The identification of uncertainties factor to get applied on super-elements to reach a relevant 
coverage of predictions requires metrics in both frequency and time domain. ARIANE 5 load case 
predictions are indeed performed in these two spaces with a global objective of releasing 99% 
envelope vibration levels. 

2.2 Time domain ( tA ) & frequency domain ( fA ) sensitivity metrics 

In the time domain, the metric is defined as the scalar ratio between maximum values of 
99% envelope and nominal prediction (7). 

 
(t))(γmax

(t))(γmax
A

nominalt

99%t
t =  (7) 

In the frequency domain, the metric is defined by the weighted sum of the mean 
amplification ratios at resonance calculated on the different peaks computed through shock 
spectra responses (8). 
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∫
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i

(f))(γmax

(f))(γmax
C  (8) 

The 99% envelopes are assessed through quantiles computations based on the several 
thousands of simulations representing one single uncertainty case where different super-elements 
are scattered with a specific value of uncertainty parameter δ (Figure 4). 

 
Figure 4: Nominal and 99% predictions 

2.3 Calibration of  Mδ  and Kδ  

As a first step, unitary sensitivity studies were performed to identify driving uncertainty 
factors w.r.t dynamic responses of the launcher. Each super-element was scattered separately 
considering four values of tuning factor Mδ  and Kδ selected between 10% and 40%, represented 
each time by about 2000 draws of different stochastic matrices [G] introducing the required global 
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degree of uncertainty on the related launcher part. Each assembled model was then used for a 
vibration prediction corresponding to the SRBs first acoustic mode load case in both frequency 
and time domains Using coverage metrics tA  and fA , sensibility plots were computed on every 
launcher’s point of interest corresponding to sensor locations in order to compare the results with 
the flight data. Families were identified based on their visual similarity of behavior and their 
spatial location on the launcher. Similar footprints were identified on spatial location families on 
the launcher which allowed defining spatially correlated zone regarding the load case dynamic 
responses on spatial zones. An example is given for the blue delimited zone on the Figure 5. 

 
Figure 5: Sensibility footprints vs. mechanical models within a spatial family 

 
The family segmentation gave similar results when performed in time and frequency 

domains, which looks logical as the physic of the load case is unique behind the time or frequency 
approaches. Hence, the non-parametric methodology allows putting uncertainties on a FEM on a 
limited spatial zone. This opens a large spectrum of possible tuning consistent with uncertainties 
of one or several super-elements. Nevertheless, the single footprints, if useful to have a first trend 
of the relative importance of uncertainties applied on super-elements, are not adapted to multi-
variable uncertainties tuning; this requires setting-up multi-dimensional surfaces whose 
exhaustive computation would be still too demanding regarding CPU time.To overcome this 
drawback, an optimized factorial design coupled with relevant simplifications was set-up in order 
to estimate reliably the response surfaces approximating the responses amplification as a function 
of the various uncertainties within an acceptable amount of computations. 

3 SURFACE RESPONSES FACTORIAL DESIGN APPROACH 

3.1 Modeling of factorial design 

The aim of the factorial design is to have an analytical formulation as accurate as possible 
in order to predict quickly the launcher responses for any set of uncertainties applied on its 
structures without generating the 2000 stochastic matrices or computing the corresponding 
responses with the FEM. The surface response was addressed through a Taylor development of 
the computed sensitivity metrics (9).  

εXXXXXα...XXαXαα)X,X,X,X,(XA
mlkjim),l,k,j,(i,

mlkjiijklm
jij),(i,

jiij
i

ii0mlkjit/f +++++= ∑∑∑
≤≤≤≤≤

  (9)  
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With:  
• At/f : the time/frequency coverage of the response in one point of the scattered launcher 

with respect to the nominal response (no uncertainty in the model)  
• iX  : centered uncertainty level (mass/stiffness) applied to the super-element i, 

2.0
2.0−

= i
iX

d
 

• iα  : response surface coefficients to be identified 
• ε  : residue 
 
The 14N =  dimension corresponds to the number of super-elements considered for the 

non-parametric method, e.g. stiffness and mass uncertainties tuning factors applied on 7 super-
elements. The polynomial form is in accordance with sensibility footprints that didn’t put in 
evidence any steep variations but rather continuous evolutions. The factorial design setting-up is 
based on the selection of optimal sets of values for input parameters )X,X,X,X,(X mlkji  

allowing the minimization of the residual factors { }iεε  for P realization with NP ≤ . The 
identification problem of the response surface coefficients can thus be defined by the linear 
system (10). 
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With:  
• y  : realization vector gathering the results of the experiences attempted 
• X : factorial design matrix gathering the selected values of the input parameters and 

defining the different independent experiences performed to have the realization 
vector. 

Such system is classically solved through a regression method by increasing the number 
of experiences from P to N and computing most likely parameters α~ (11). 

 ( ) { }YXXXα~ T1T ⋅⋅⋅=
−

 (11) 

Nevertheless, with formulation (8), the resolution of the order N exhaustive Taylor 
development requires to identify a very large number of coefficients (12): 

 ( )∑
=

−
−⋅−⋅++=

N

i

N
i

N
i CiNNCim

1

1
11d  (12) 

For 14 variables, it is equivalent to 761.856 coefficients, so potentially as many 
experiences to perform, representing up to more than 3000 years of CPU time. As a result, such a 
problem cannot be solved now, except by massive parallelization of CPU’s. Thus, dimension of 
the problem was reduced (13) in order to ensure admissible computation time but still maintaining 
an acceptable accuracy of the response surface. A factorial design approach based on 
Rechtshaffner formulations [5] was set-up accordingly. 
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Relative weights on applied uncertainties can be assessed through jij),(i,ij,α <  (order 2 
interaction) and kjik),j,(i,k,ij,α <<  (order 3 interaction) of (9). Their importance is determined by the 
measurement of the difference in predicted levels with and without this term (Table 1). 

 
Table 1: Cross-interaction metrics 

 
The Figure 6 presents a typical interaction plot where the ground surface is offset at 15%, 

meaning that only differences higher than this threshold appear. The stiffness uncertainties cross-
interactions are presented, IxJ  tag corresponding to the cross interaction between super-elements 
I and J along the different response locations. 

 
Figure 6: Stiffness cross-interactions between super-elements 

 
The factorial design approach is thus a powerful tool that will be used to set-up a generic 

uncertainties treatment to be used to release justified and less dimensioning specifications. As a 
first step, the methodology was used to tune uncertainty factor required to cover flight vibrations 
by prediction thanks to the polynomial approximation of the launcher responses amplification. 
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4 CALIBRATION OF UNCERTAINTIES TUNING FACTORS 

The weight to be applied on uncertainties tuning factors can be assessed by analysis of 
flight vibration records using coverage metrics and the analytical behavior of the response 
amplification of the scattered launcher given by the response surface (13). These populations were 
then reused to extrapolate tuning factors to get used for releasing 99% envelope vibration levels. 
Results presented here are a first flight coverage analyses.  

4.1 Flight coverage tuning factors 

The coverage level is defined (in the frequency domain) by (14).  

 )δ,(δf)δ,δ( K
j

M
jF

/K
j

M
j ⋅= volnom

FF CC   (14) 

• volnom
FC / is the ratio of nominal (e.g. without uncertainties) predicted responses vs. 

flight measured ones (Figure 7), 
• Ff  is the response surface approximating the response amplification of the scattered 

launcher with respect to the nominal one via the polynomial expression (13). 
The frequency analyses of flight records were reached by shock spectra analysis.  

 
Figure 7: Flight average coverage 

 
A vector objective function (15) was defined on the uncertainty vector δ = (δM

1, …, δM
7, 

δK
1, …, δK

7) and optimization algorithms were used to find tuning parameters allowing prediction 
being as close as possible as flight observations. 

 { }1)()( −⋅= dd FFobj fCF   (15) 

The optimizations were realized through Monte-Carlo simulations that demonstrated a 
convergence of uncertainties tuning parameters into limited intervals.  
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The table 2 illustrates the results for stiffness uncertainties. 

 
Table 2: Optimized uncertainties tuning parameters 

 
The solution domain corresponding to a flight event is only a small sub-domain of the 7th 

dimension space (stiffness uncertainties considered here) but is not singular, meaning that 
different tuning factors were found admissible regarding the objective function and physical 
likelihood. Moreover, it has been numerically assessed that the solution sub-domain was 
continuous: for a specific solution vector δ0, the vectors δ0+ dδ with Od dd <<  belong also to 
solutions sub domain. Different convergence algorithms were tested to verify the robustness of 
the solution domain and find one specific set of uncertainties optimizing the flight coverage by the 
scatter launcher assembly. They confirmed the tuned domains, without noticeable reduction. 
These optimums identified thanks to the polynomial approximation of the launcher behavior have 
been checked by re-computing directly the responses of the corresponding scattered launcher with 
the finite element model and the related scattered matrices of its sub-structures. Those final direct 
computations (not the polynomial prediction) for two optimized uncertainties sets are presented in 
Figure 8 and compared with the nominal simulation by showing the response amplification of 12 
observation points with respect to the flight measurements. The unity coverage diagram (plotted 
in blue) represents the target level of amplification for the optimization process and also the 
threshold that should not be underpassed. 

 
Figure 8: Optimization flight coverage results 
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The optimal tunings are giving a closer coverage flight than nominal simulation. They are 

demonstrating that predictions closer to flight can be achieved through application of non-
parametric uncertainties technique to super-elements. 

5 CONCLUSION 

The application of non-parametric uncertainties propagation through factorial design on an 
ARIANE5 dimensioning load case proved to be fruitful. With a relatively limited time 
computation, it is possible to analyze unitary and cross-interaction of mass and stiffness 
characteristics of the main sub-part of the launcher. Using flight measurement feedback allows 
quantifying and justifying uncertainties set to be applied on the different sub-structures flight by 
flight.  
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